--- id: 5900f3ec1000cf542c50fefe title: 'Problema 127: Trio abc' challengeType: 5 forumTopicId: 301754 dashedName: problem-127-abc-hits --- # --description-- O radical de $n$, $rad(n)$, é o produto dos fatores primos distintos de $n$. Por exemplo, $504 = 2^3 × 3^2 × 7$, então $rad(504) = 2 × 3 × 7 = 42$. Definiremos o trio de números inteiros positivos (a, b, c) como sendo um trio abc se: 1. $GCD(a, b) = GCD(a, c) = GCD(b, c) = 1$ 2. $a < b$ 3. $a + b = c$ 4. $rad(abc) < c$ Por exemplo, (5, 27, 32) é um trio abc, pois: 1. $GCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1$ 2. $5 < 27$ 3. $5 + 27 = 32$ 4. $rad(4320) = 30 < 32$ Ocorre que os trios abc são bastante raros e há somente 31 deles para $c < 1000$, com a $\sum{c} = 12523$. Encontre a $\sum{c}$ para $c < 120000$. # --hints-- `abcHits()` deve retornar `18407904`. ```js assert.strictEqual(abcHits(), 18407904); ``` # --seed-- ## --seed-contents-- ```js function abcHits() { return true; } abcHits(); ``` # --solutions-- ```js // solution required ```