--- id: 5900f4091000cf542c50ff1c title: 'Problema 157: Resolução da equação diofantina' challengeType: 5 forumTopicId: 301788 dashedName: problem-157-solving-the-diophantine-equation --- # --description-- Considere a equação diofantina $\frac{1}{a} + \frac{1}{b} = \frac{p}{{10}^n}$, sendo $a$, $b$, $p$, $n$ números inteiros positivos e $a ≤ b$. Para $n = 1$, esta equação tem 20 soluções listadas abaixo: $$\begin{array}{lllll} \frac{1}{1} + \frac{1}{1} = \frac{20}{10} & \frac{1}{1} + \frac{1}{2} = \frac{15}{10} & \frac{1}{1} + \frac{1}{5} = \frac{12}{10} & \frac{1}{1} + \frac{1}{10} = \frac{11}{10} & \frac{1}{2} + \frac{1}{2} = \frac{10}{10} \\\\ \frac{1}{2} + \frac{1}{5} = \frac{7}{10} & \frac{1}{2} + \frac{1}{10} = \frac{6}{10} & \frac{1}{3} + \frac{1}{6} = \frac{5}{10} & \frac{1}{3} + \frac{1}{15} = \frac{4}{10} & \frac{1}{4} + \frac{1}{4} = \frac{5}{10} \\\\ \frac{1}{4} + \frac{1}{4} = \frac{5}{10} & \frac{1}{5} + \frac{1}{5} = \frac{4}{10} & \frac{1}{5} + \frac{1}{10} = \frac{3}{10} & \frac{1}{6} + \frac{1}{30} = \frac{2}{10} & \frac{1}{10} + \frac{1}{10} = \frac{2}{10} \\\\ \frac{1}{11} + \frac{1}{110} = \frac{1}{10} & \frac{1}{12} + \frac{1}{60} = \frac{1}{10} & \frac{1}{14} + \frac{1}{35} = \frac{1}{10} & \frac{1}{15} + \frac{1}{30} = \frac{1}{10} & \frac{1}{20} + \frac{1}{20} = \frac{1}{10} \end{array}$$ Quantas soluções tem esta equação para $1 ≤ n ≤ 9$? # --hints-- `diophantineEquation()` deve retornar `53490`. ```js assert.strictEqual(diophantineEquation(), 53490); ``` # --seed-- ## --seed-contents-- ```js function diophantineEquation() { return true; } diophantineEquation(); ``` # --solutions-- ```js // solution required ```