--- id: 5900f3b11000cf542c50fec4 title: 'Problema 69: Totiente máximo' challengeType: 5 forumTopicId: 302181 dashedName: problem-69-totient-maximum --- # --description-- A função Totiente de Euler, ${\phi}(n)$ (às vezes chamada de função phi), é usada para determinar a quantidade de números menores que `n`, que são primos próximos de `n`. Por exemplo, 1, 2, 4, 5, 7 e 8 são todos inferiores a nove e primos relativos de nove, ${\phi}(9) = 6$.
| $n$ | $\text{Relatively Prime}$ | $\displaystyle{\phi}(n)$ | $\displaystyle\frac{n}{{\phi}(n)}$ | | --- | ------------------------- | ------------------------ | ---------------------------------- | | 2 | 1 | 1 | 2 | | 3 | 1,2 | 2 | 1.5 | | 4 | 1,3 | 2 | 2 | | 5 | 1,2,3,4 | 4 | 1.25 | | 6 | 1,5 | 2 | 3 | | 7 | 1,2,3,4,5,6 | 6 | 1.1666... | | 8 | 1,3,5,7 | 4 | 2 | | 9 | 1,2,4,5,7,8 | 6 | 1.5 | | 10 | 1,3,7,9 | 4 | 2.5 |
Aqui, vemos que `n` = 6 produz um máximo $\displaystyle\frac{n}{{\phi}(n)}$, onde `n` ≤ 10. Calcule o valor de `n` ≤ `limit` onde $\displaystyle\frac{n}{{\phi(n)}}$ é um máximo. # --hints-- `totientMaximum(10)` deve retornar um número. ```js assert(typeof totientMaximum(10) === 'number'); ``` `totientMaximum(10)` deve retornar `6`. ```js assert.strictEqual(totientMaximum(10), 6); ``` `totientMaximum(10000)` deve retornar `2310`. ```js assert.strictEqual(totientMaximum(10000), 2310); ``` `totientMaximum(500000)` deve retornar `30030`. ```js assert.strictEqual(totientMaximum(500000), 30030); ``` `totientMaximum(1000000)` deve retornar `510510`. ```js assert.strictEqual(totientMaximum(1000000), 510510); ``` # --seed-- ## --seed-contents-- ```js function totientMaximum(limit) { return true; } totientMaximum(10); ``` # --solutions-- ```js function totientMaximum(limit) { function getSievePrimes(max) { const primesMap = new Array(max).fill(true); primesMap[0] = false; primesMap[1] = false; const primes = []; for (let i = 2; i < max; i = i + 2) { if (primesMap[i]) { primes.push(i); for (let j = i * i; j < max; j = j + i) { primesMap[j] = false; } } if (i === 2) { i = 1; } } return primes; } const MAX_PRIME = 50; const primes = getSievePrimes(MAX_PRIME); let result = 1; for (let i = 0; result * primes[i] < limit; i++) { result *= primes[i]; } return result; } ```