--- id: 5900f3b21000cf542c50fec5 title: 'Problema 70: Permutações de totientes' challengeType: 5 forumTopicId: 302183 dashedName: problem-70-totient-permutation --- # --description-- A função totiente de Euler, ${\phi}(n)$ (às vezes chamada de função phi), é usada para determinar a quantidade de números menores que `n`, que são primos próximos de `n`. Por exemplo, 1, 2, 4, 5, 7 e 8 são todos inferiores a nove e primos relativos de nove, ${\phi}(9) = 6$. O número 1 é considerado um primo relativo para todos os números positivos, portanto ${\phi}(1) = 1$. Curiosamente, ${\phi}(87109) = 79180$, e pode ser visto que 87109 é uma permutação de 79180. Encontre o valor de `n`, 1 < `n` < `limit`, onde ${\phi}(n)$ é uma permutação de `n` e a razão $\displaystyle\frac{n}{{\phi}(n)}$ produz um mínimo. # --hints-- `totientPermutation(10000)` deve retornar um número. ```js assert(typeof totientPermutation(10000) === 'number'); ``` `totientPermutation(10000)` deve retornar `4435`. ```js assert.strictEqual(totientPermutation(10000), 4435); ``` `totientPermutation(100000)` deve retornar `75841`. ```js assert.strictEqual(totientPermutation(100000), 75841); ``` `totientPermutation(500000)` deve retornar `474883`. ```js assert.strictEqual(totientPermutation(500000), 474883); ``` `totientPermutation(10000000)` deve retornar `8319823`. ```js assert.strictEqual(totientPermutation(10000000), 8319823); ``` # --seed-- ## --seed-contents-- ```js function totientPermutation(limit) { return true; } totientPermutation(10000); ``` # --solutions-- ```js function totientPermutation(limit) { function getSievePrimes(max) { const primes = []; const primesMap = new Array(max).fill(true); primesMap[0] = false; primesMap[1] = false; for (let i = 2; i < max; i += 2) { if (primesMap[i]) { primes.push(i); for (let j = i * i; j < max; j += i) { primesMap[j] = false; } } if (i === 2) { i = 1; } } return primes; } function sortDigits(number) { return number.toString().split('').sort().join(''); } function isPermutation(numberA, numberB) { return sortDigits(numberA) === sortDigits(numberB); } const MAX_PRIME = 4000; const primes = getSievePrimes(MAX_PRIME); let nValue = 1; let minRatio = Infinity; for (let i = 1; i < primes.length; i++) { for (let j = i + 1; j < primes.length; j++) { const num = primes[i] * primes[j]; if (num > limit) { break; } const phi = (primes[i] - 1) * (primes[j] - 1); const ratio = num / phi; if (minRatio > ratio && isPermutation(num, phi)) { nValue = num; minRatio = ratio; } } } return nValue; } ```