---
id: 587d825d367417b2b2512c96
title: Пошук у глибину
challengeType: 1
forumTopicId: 301640
dashedName: depth-first-search
---
# --description--
Тут ми ознайомимося з алгоритмом обходу графу під назвою пошук у глибину, який є подібним до пошуку у ширину.
Під час пошуку в ширину робота алгоритму починається з вихідного вузла, а далі він проходить по вузлах таким чином, що кожне наступне ребро є довшим за попереднє. В той час алгоритм Пошук у глибину спочатку обирає найдовше ребро.
Коли пошук досягне кінця шляху, він повернеться до останнього вузла з невідвіданим ребром і продовжить пошук.
На анімації нижче наочно показано, яким чином працює цей алгоритм. Алгоритм починається з верхнього вузла і проходить по вузлах так, як пронумеровано в анімації.
Зверніть увагу: щоразу, коли даний алгоритм відвідує якийсь вузол, він не проходить по всіх сусідніх вузлах (в цьому полягає його відмінність від пошуку в ширину). Натомість він спочатку відвідує одну з сусідніх вершин і далі проходить вниз, допоки не відвідає всі вершини на цьому шляху.
Для реалізації цього алгоритму краще використати стек. Стек - це масив, в якому останній доданий елемент видаляється першим. Тобто це структура даних, яка працює за принципом Останній прийшов - перший пішов (англ. Last-In-First-Out (LIFO)). Стек допоможе при пошуку в глибину, адже (коли ми додаємо до стеку сусідні елементи) нам потрібно спочатку відвідати останніх доданих сусідів і вилучити їх зі стеку.
В простому випадку цей алгоритм виводить список вузлів, доступних з даного вузла. Таким чином, також краще відстежувати відвідані вузли.
# --instructions--
Напишіть функцію `dfs()`, яка приймає неорієнтовану матрицю суміжності `graph` та мітку вузла `root` як параметри. Міткою вузла буде ціле значення вузла між `0` і `n - 1`, де `n` - загальна кількість вузлів у графі.
Ваша функція повинна виводити масив усіх вузлів, які можна досягти з `root`.
# --hints--
Вхідний граф `[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]` з початковим вузлом `1` повинен повертатися як масив з чисел `0`, `1`, `2` і `3`.
```js
assert.sameMembers(
(function () {
var graph = [
[0, 1, 0, 0],
[1, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 0]
];
return dfs(graph, 1);
})(),
[0, 1, 2, 3]
);
```
Вхідний граф `[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]` з початковим вузлом `1` повинен повертатися як масив з чотирьох елементів.
```js
assert(
(function () {
var graph = [
[0, 1, 0, 0],
[1, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 0]
];
return dfs(graph, 1);
})().length === 4
);
```
Вхідний граф `[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]]` з початковим вузлом `3` повинен повертатися як масив з числом `3`.
```js
assert.sameMembers(
(function () {
var graph = [
[0, 1, 0, 0],
[1, 0, 1, 0],
[0, 1, 0, 0],
[0, 0, 0, 0]
];
return dfs(graph, 3);
})(),
[3]
);
```
Вхідний граф `[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]]` з початковим вузлом `3` повинен повертатися як масив з одним елементом.
```js
assert(
(function () {
var graph = [
[0, 1, 0, 0],
[1, 0, 1, 0],
[0, 1, 0, 0],
[0, 0, 0, 0]
];
return dfs(graph, 3);
})().length === 1
);
```
Вхідний граф`[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]` з початковим вузлом `3` повинен повертатися як масив з чисел `2` і `3`.
```js
assert.sameMembers(
(function () {
var graph = [
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0]
];
return dfs(graph, 3);
})(),
[2, 3]
);
```
Вхідний граф `[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]` з початковим вузлом `3` повинен повертатися як масив з двох елементів.
```js
assert(
(function () {
var graph = [
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0]
];
return dfs(graph, 3);
})().length === 2
);
```
Вхідний граф `[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]` з початковим вузлом `0` повинен повертатися як масив з чисел `0` і `1`.
```js
assert.sameMembers(
(function () {
var graph = [
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0]
];
return dfs(graph, 0);
})(),
[0, 1]
);
```
Вхідний граф `[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]` з початковим вузлом `0` повинен повертатися як масив з двох елементів.
```js
assert(
(function () {
var graph = [
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0]
];
return dfs(graph, 0);
})().length === 2
);
```
# --seed--
## --seed-contents--
```js
function dfs(graph, root) {
}
var exDFSGraph = [
[0, 1, 0, 0],
[1, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 0]
];
console.log(dfs(exDFSGraph, 3));
```
# --solutions--
```js
function dfs(graph, root) {
var stack = [];
var tempV;
var visited = [];
var tempVNeighbors = [];
stack.push(root);
while (stack.length > 0) {
tempV = stack.pop();
if (visited.indexOf(tempV) == -1) {
visited.push(tempV);
tempVNeighbors = graph[tempV];
for (var i = 0; i < tempVNeighbors.length; i++) {
if (tempVNeighbors[i] == 1) {
stack.push(i);
}
}
}
}
return visited;
}
```