--- id: 5900f4301000cf542c50ff42 title: 'Завдання 196: Прості триплети' challengeType: 5 forumTopicId: 301834 dashedName: problem-196-prime-triplets --- # --description-- Побудуйте трикутник з усіх додатних чисел наступним чином: $$\begin{array}{rrr} & 1 \\\\ & \color{red}{2} & \color{red}{3} \\\\ & 4 & \color{red}{5} & 6 \\\\ & \color{red}{7} & 8 & 9 & 10 \\\\ & \color{red}{11} & 12 & \color{red}{13} & 14 & 15 \\\\ & 16 & \color{red}{17} & 18 & \color{red}{19} & 20 & 21 \\\\ & 22 & \color{red}{23} & 24 & 25 & 26 & 27 & 28 \\\\ & \color{red}{29} & 30 & \color{red}{31} & 32 & 33 & 34 & 35 & 36 \\\\ & \color{red}{37} & 38 & 39 & 40 & \color{red}{41} & 42 & \color{red}{43} & 44 & 45 \\\\ & 46 & \color{red}{47} & 48 & 49 & 50 & 51 & 52 & \color{red}{53} & 54 & 55 \\\\ & 56 & 57 & 58 & \color{red}{59} & 60 & \color{red}{61} & 62 & 63 & 64 & 65 & 66 \\\\ & \cdots \end{array}$$ У трикутнику біля кожного додатного числа є ще до восьми чисел. Множина з трьох простих чисел називається простим триплетом, якщо два інших числа в трикутнику є сусідніми одному з трьох простих. Наприклад, у другому рядку прості числа 2 і 3 - це елементи якогось простого триплета. Якщо розглядати 8 рядок, то він містить два простих числа, які є елементами простого триплета, тобто 29 та 31. Якщо розглядати рядок 9, він містить лише одне просте число, яке є елементом деякого простого триплета: 37. Визначте $S(n)$ як суму простих чисел у рядку $n$, які є елементами будь-якого простого триплета. Потім $S(8) = 60$ і $S(9) = 37$. Дано, що $S(10000) = 950007619$. Знайдіть $S(5678027) + S(7208785)$. # --hints-- `primeTriplets()` має повернути `322303240771079940`. ```js assert.strictEqual(primeTriplets(), 322303240771079940); ``` # --seed-- ## --seed-contents-- ```js function primeTriplets() { return true; } primeTriplets(); ``` # --solutions-- ```js // solution required ```