--- id: 5900f4531000cf542c50ff65 title: 'Завдання 230: Слова Фібоначчі' challengeType: 5 forumTopicId: 301874 dashedName: problem-230-fibonacci-words --- # --description-- Для будь-яких двох рядків цифр, $A$ і $B$, визначаємо $F_{A,B}$ як послідовність ($A, B, AB, BAB, ABBAB, \ldots $), у якій кожен елемент є поєднанням двох попередніх. Далі ми визначаємо $D_{A,B}(n)$ як $n^{\text{th}}$ цифру у першому елементі $F_{A,B}$, що містить принаймні $n$ цифр. Наприклад: Нехай $A = 1\\,415\\,926\\,535$, $B = 8\\,979\\,323\\,846$. Припустимо, ми хочемо знайти $D_{A,B}(35)$. Першими елементами $F_{A,B}$ є: $$\begin{align} & 1\\,415\\,926\\,535 \\\\ & 8\\,979\\,323\\,846 \\\\ & 14\\,159\\,265\\,358\\,979\\,323\\,846 \\\\ & 897\\,932\\,384\\,614\\,159\\,265\\,358\\,979\\,323\\,846 \\\\ & 14\\,159\\,265\\,358\\,979\\,323\\,846\\,897\\,932\\,384\\,614\\,15\color{red}{9}\\,265\\,358\\,979\\,323\\,846 \end{align}$$ Тоді $D_{A,B}(35)$ — це ${35}^{\text{th}}$ цифра п'ятого елемента, тобто 9. Тепер для $A$ використовуємо перші 100 цифр після десяткового розділювача: $$\begin{align} & 14\\,159\\,265\\,358\\,979\\,323\\,846\\,264\\,338\\,327\\,950\\,288\\,419\\,716\\,939\\,937\\,510 \\\\ & 58\\,209\\,749\\,445\\,923\\,078\\,164\\,062\\,862\\,089\\,986\\,280\\,348\\,253\\,421\\,170\\,679 \end{align}$$ і для $B$ наступні 100 цифр: $$\begin{align} & 82\\,148\\,086\\,513\\,282\\,306\\,647\\,093\\,844\\,609\\,550\\,582\\,231\\,725\\,359\\,408\\,128 \\\\ & 48\\,111\\,745\\,028\\,410\\,270\\,193\\,852\\,110\\,555\\,964\\,462\\,294\\,895\\,493\\,038\\,196 \end{align}$$ Знайдіть $\sum_{n = 0, 1, \ldots, 17} {10}^n × D_{A,B}((127 + 19n) × 7^n)$. # --hints-- `fibonacciWords()` має повернути `850481152593119200`. ```js assert.strictEqual(fibonacciWords(), 850481152593119200); ``` # --seed-- ## --seed-contents-- ```js function fibonacciWords() { return true; } fibonacciWords(); ``` # --solutions-- ```js // solution required ```