--- id: 5900f4711000cf542c50ff84 title: 'Завдання 261: Ключові суми площі' challengeType: 5 forumTopicId: 301910 dashedName: problem-261-pivotal-square-sums --- # --description-- Назвемо натуральне ціле число $k$ квадратною зведеною, якщо є пара цілих чисел $m > 0$ і $n ≥ k$, так що сума ($m + 1$) послідовних квадратів до $k$ дорівнює сумі послідовних квадратів $m$ з ($n + 1$) на: $${(k - m)}^2 + \ldots + k^2 = {(n + 1)}^2 + \ldots + {(n + m)}^2$$ Деякі маленькі квадратні повороти є $$\begin{align} & \mathbf{4}: 3^2 + \mathbf{4}^2 = 5^2 \\\\ & \mathbf{21}: {20}^2 + \mathbf{21}^2 = {29}^2 \\\\ & \mathbf{24}: {21}^2 + {22}^2 + {23}^2 + \mathbf{24}^2 = {25}^2 + {26}^2 + {27}^2 \\\\ & \mathbf{110}: {108}^2 + {109}^2 + \mathbf{110}^2 = {133}^2 + {134}^2 \\\\ \end{align}$$ Знайдіть суму всіх різних квадратних куточків $≤ {10}^{10}$. # --hints-- `pivotalSquareSums()` має повернути `238890850232021`. ```js assert.strictEqual(pivotalSquareSums(), 238890850232021); ``` # --seed-- ## --seed-contents-- ```js function pivotalSquareSums() { return true; } pivotalSquareSums(); ``` # --solutions-- ```js // solution required ```