--- id: 5900f4751000cf542c50ff87 title: 'Завдання 264: Центри трикутників' challengeType: 5 forumTopicId: 301913 dashedName: problem-264-triangle-centres --- # --description-- Розглянемо всі трикутники, що мають: - Усі їх вершини в точках решітки. - Окружний центр у координаті О. - Ортоцентр у точці H(5, 0). Існує дев’ять таких трикутників, які мають $\text{perimeter} ≤ 50$. Перелічені та показані у порядку зростання їхнього периметра, вони:
A(-4, 3), B(5, 0), C(4, -3)
A(4, 3), B(5, 0), C(-4, -3)
A(-3, 4), B(5, 0), C(3, -4)


A(3, 4), B(5, 0), C(-3, -4)
A(0, 5), B(5, 0), C(0, -5)
A(1, 8), B(8, -1), C(-4, -7)


A(8, 1), B(1, -8), C(-4, 7)
A(2, 9), B(9, -2), C(-6, -7)
A(9, 2), B(2, -9), C(-6, 7)
дев'ять трикутників ABC з периметром ≤ 50
Сума їхніх периметрів, округлена до чотирьох знаків після коми, дорівнює 291.0089. Знайдіть усі такі трикутники з $\text{perimeter} ≤ {10}^5$. У відповідь введіть суму їхніх периметрів, округлену до чотирьох знаків після коми. # --hints-- `triangleCentres()` має повернути `2816417.1055`. ```js assert.strictEqual(triangleCentres(), 2816417.1055); ``` # --seed-- ## --seed-contents-- ```js function triangleCentres() { return true; } triangleCentres(); ``` # --solutions-- ```js // solution required ```