--- id: 5900f4be1000cf542c50ffd0 title: 'Задача 337: ступінчасті послідовності Ейлера' challengeType: 5 forumTopicId: 301995 dashedName: problem-337-totient-stairstep-sequences --- # --description-- Нехай $\\{a_1, a_2, \ldots, a_n\\}$ буде послідовністю цілих чисел довжиною $n$ такою, що: - $a_1 = 6$ - для всіх $1 ≤ i < n$ : $φ(a_i) < φ(a_{i + 1}) < a_i < a_{i + 1}$ $φ$ позначає функцію Ейлера. Нехай $S(N)$ буде кількістю таких послідовностей з $a_n ≤ N$. Наприклад, $S(10) = 4$: {6}, {6, 8}, {6, 8, 9} та {6, 10}. Ми можемо перевірити, що $S(100) = 482\\,073\\,668$ та $S(10\\,000)\bmod {10}^8 = 73\\,808\\,307$. Знайдіть $S(20\\,000\\,000)\bmod {10}^8$. # --hints-- `totientStairstepSequences()` має вивести `85068035`. ```js assert.strictEqual(totientStairstepSequences(), 85068035); ``` # --seed-- ## --seed-contents-- ```js function totientStairstepSequences() { return true; } totientStairstepSequences(); ``` # --solutions-- ```js // solution required ```