--- id: 5900f54b1000cf542c51005d title: 'Задача 479: Корені на підйомі' challengeType: 5 forumTopicId: 302156 dashedName: problem-479-roots-on-the-rise --- # --description-- Нехай $a_k$, $b_k$ та $c_k$ представляють три рішення (дійсні та комплексні числа) для виразу $\frac{1}{x} = {\left(\frac{k}{x} \right)}^2 (k + x^2) - kx$. Наприклад, для $k = 5$ ми бачимо, що $\\{a_5, b_5, c_5\\}$ майже рівні $\\{5.727244, -0.363622 + 2.057397i, -0.363622 - 2.057397i\\}$. Нехай $S(n) = \displaystyle\sum_{p = 1}^n \sum_{k = 1}^n {(a_k + b_k)}^p {(b_k + c_k)}^p {(c_k + a_k)}^p$ для всіх цілих $p$, $k$, таких що $1 ≤ p, k ≤ n$. Цікаво, що $S(n)$ завжди є цілим числом. Наприклад, $S(4) = 51\\,160$. Знайдіть $S({10}^6) \text{ modulo } 1\\,000\\,000\\,007$. # --hints-- `rootsOnTheRise()` має повернути `191541795`. ```js assert.strictEqual(rootsOnTheRise(), 191541795); ``` # --seed-- ## --seed-contents-- ```js function rootsOnTheRise() { return true; } rootsOnTheRise(); ``` # --solutions-- ```js // solution required ```