---
id: 598eef80ba501f1268170e1e
title: Послідовність n-крокових чисел Фібоначчі
challengeType: 5
forumTopicId: 302267
dashedName: fibonacci-n-step-number-sequences
---
# --description--
Ця серія чисел є розширенням звичайної [послідовності Фібоначчі](https://rosettacode.org/wiki/Fibonacci sequence "Fibonacci sequence") де:
- Для $n = 2$ ми маємо послідовність Фібоначчі; з початковими значеннями $[1, 1]$ і $F_k^2 = F_{k-1}^2 + F_{k-2}^2$
- Для $n = 3$ ми маємо послідовність трібоначчі; з початковими значеннями $[1, 2]$ і $F_k^3 = F_{k-1}^3 + F_{k-2}^3 + F_{k-3}^3$
- Для $n = 4$ маємо послідовність тетраначчі; з початковими значеннями $[1, 2, 4]$ та $F_k^4 = F_{k-1}^4 + F_{k-2}^4 + F_{k-3}^4 + F_{k-4}^4$...
- Для загального $n>2$ ми маємо послідовність Фібоначчі $n$-крокову - $F_k^n$; з початковими значеннями з перших $n$ значень $(n-1)$'th $n$-крокової послідовності Фібоначчі $F_k^{n-1}$; і $k$'th значення цієї $n$'ої послідовності - $F_k^n = \sum_{i=1}^{(n)} {F_{k-i}^{(n)}$
Для невеликих значень $n$,