--- id: 5900f3fa1000cf542c50ff0c title: 问题140:改进的斐波那契金块 challengeType: 5 videoUrl: '' dashedName: problem-140-modified-fibonacci-golden-nuggets --- # --description-- 考虑无穷多项式系列AG(x)= xG1 + x2G2 + x3G3 + ...,其中Gk是二阶递归关系的第k项,Gk = Gk-1 + Gk-2,G1 = 1,G2 = 4;也就是说,1,4,5,9,14,23 ......对于这个问题,我们将关注x的值,其中AG(x)是正整数。前五个自然数的x的相应值如下所示。 xAG(x)(√5-1)/ 41 2/52(√22-2)/ 63(√137-5)/ 144 1/25 如果x是理性的,我们将称AG(x)为金块,因为它们变得越来越稀少;例如,第20个金块是211345365.找到前30个金块的总和。 # --hints-- `euler140()`应该返回5673835352990。 ```js assert.strictEqual(euler140(), 5673835352990); ``` # --seed-- ## --seed-contents-- ```js function euler140() { return true; } euler140(); ``` # --solutions-- ```js // solution required ```