--- id: 5900f4b91000cf542c50ffcc title: 问题333:特殊分区 challengeType: 5 videoUrl: '' dashedName: problem-333-special-partitions --- # --description-- 可以以这样的方式划分所有正整数:分区的每个项可以表示为2ix3j,其中i,j≥0。 我们只考虑那些没有任何术语可以划分任何其他术语的分区。例如,17 = 2 + 6 + 9 =(21x30 + 21x31 + 20x32)的分区将无效,因为2可以除以6.分区17 = 16 + 1 =(24x30 + 20x30)也不会因为1可以除16. 17的唯一有效分区是8 + 9 =(23x30 + 20x32)。 许多整数具有多个有效分区,第一个是具有以下两个分区的11。 11 = 2 + 9 =(21x30 + 20x32)11 = 8 + 3 =(23x30 + 20x31) 让我们将P(n)定义为n的有效分区数。例如,P(11)= 2。 让我们只考虑具有单个有效分区的素数整数q,例如P(17)。 素数q <100的总和使得P(q)= 1等于233。 找到质数q <1000000的总和,使得P(q)= 1。 # --hints-- `euler333()`应返回3053105。 ```js assert.strictEqual(euler333(), 3053105); ``` # --seed-- ## --seed-contents-- ```js function euler333() { return true; } euler333(); ``` # --solutions-- ```js // solution required ```