--- title: Ackermann function id: 594810f028c0303b75339acf challengeType: 5 --- ## Description

The Ackermann function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. It grows very quickly in value, as does the size of its call tree.

The Ackermann function is usually defined as follows:

$$A(m, n) = \begin{cases} n+1 & \mbox{if } m = 0 \\ A(m-1, 1) & \mbox{if } m > 0 \mbox{ and } n = 0 \\ A(m-1, A(m, n-1)) & \mbox{if } m > 0 \mbox{ and } n > 0. \end{cases}$$

Its arguments are never negative and it always terminates. Write a function which returns the value of $A(m, n)$. Arbitrary precision is preferred (since the function grows so quickly), but not required.

## Instructions
## Tests
```yml tests: - text: ack is a function. testString: 'assert(typeof ack === "function", "ack is a function.");' - text: 'ack(0, 0) should return 1.' testString: 'assert(ack(0, 0) === 1, "ack(0, 0) should return 1.");' - text: 'ack(1, 1) should return 3.' testString: 'assert(ack(1, 1) === 3, "ack(1, 1) should return 3.");' - text: 'ack(2, 5) should return 13.' testString: 'assert(ack(2, 5) === 13, "ack(2, 5) should return 13.");' - text: 'ack(3, 3) should return 61.' testString: 'assert(ack(3, 3) === 61, "ack(3, 3) should return 61.");' ```
## Challenge Seed
```js function ack (m, n) { // Good luck! } ```
## Solution
```js function ack (m, n) { return m === 0 ? n + 1 : ack(m - 1, n === 0 ? 1 : ack(m, n - 1)); } ```