Sin embargo, si introducimos el número imaginario i, esta ecuación tiene dos soluciones: x = i y x = -i.
Si vamos un paso más allá, la ecuación (x-3) 2 = -4 tiene dos soluciones complejas: x = 3 + 2i y x = 3-2i. x = 3 + 2i y x = 3-2i se llaman el conjugado complejo de cada uno.
Los números de la forma a + bi se llaman números complejos.
En general, a + bi y a − bi son complejos conjugados entre sí. Un entero gaussiano es un número complejo a + bi tal que a y b son enteros.
Los enteros regulares también son enteros gaussianos (con b = 0).
Para distinguirlos de los enteros gaussianos con b ≠ 0, llamamos a estos enteros "enteros racionales".
Un entero gaussiano se llama divisor de un entero racional n si el resultado es también un entero gaussiano.
Si, por ejemplo, dividimos 5 por 1 + 2i, podemos simplificar de la siguiente manera:
Multiplica el numerador y el denominador por el conjugado complejo de 1 + 2i: 1−2i.
El resultado es .
Entonces 1 + 2i es un divisor de 5.
Tenga en cuenta que 1 + i no es un divisor de 5 porque.
Tenga en cuenta también que si el entero gaussiano (a + bi) es un divisor de un entero racional n, entonces su conjugado complejo (a-bi) también es un divisor de n. De hecho, 5 tiene seis divisores, de modo que la parte real es positiva: {1, 1 + 2i, 1 - 2i, 2 + i, 2 - i, 5}.
La siguiente es una tabla de todos los divisores para los primeros cinco enteros racionales positivos:
n Divisores enteros gaussianos con partes reales positivas. Sumo (s) de estos
divisores 111 21, 1 + i, 1-i, 25 31, 34 41, 1 + i, 1-i, 2, 2 + 2i, 2-2i, 413 51, 1 + 2i, 1-2i, 2 + i, 2-i, 512 Para divisores con partes reales positivas, entonces, tenemos:. Para 1 ≤ n ≤ 105, ∑ s (n) = 17924657155. ¿Qué es ∑ s (n) para 1 ≤ n ≤ 108?
euler153()
debe devolver 17971254122360636.
testString: 'assert.strictEqual(euler153(), 17971254122360636, "euler153()
should return 17971254122360636.");'
```