--- id: 587d8257367417b2b2512c7c title: 检查二进制搜索树中是否存在元素 challengeType: 1 videoUrl: '' --- # --description-- 现在我们对二进制搜索树有了一般意义,让我们更详细地讨论它。二进制搜索树为平均情况下的查找,插入和删除的常见操作提供对数时间,并且在最坏情况下提供线性时间。为什么是这样?这些基本操作中的每一个都要求我们在树中找到一个项目(或者在插入的情况下找到它应该去的地方),并且由于每个父节点处的树结构,我们向左或向右分支并且有效地排除了一半的大小剩下的树。这使得搜索与树中节点数的对数成比例,这在平均情况下为这些操作创建对数时间。好的,但最坏的情况呢?那么,可考虑从以下值建构一棵树,将它们从左至右: `10` , `12` , `17` , `25` 。根据我们的规则二叉搜索树,我们将增加`12`到右侧`10` , `17` ,以这样的权利,以及`25`到这一权利。现在我们的树类似于一个链表,并且遍历它以找到`25`将要求我们以线性方式遍历所有项目。因此,在最坏的情况下,线性时间。这里的问题是树是不平衡的。我们将更多地了解这在以下挑战中意味着什么。说明:在此挑战中,我们将为树创建一个实用程序。编写一个方法`isPresent` ,它接受一个整数值作为输入,并在二叉搜索树中返回该值是否存在的布尔值。 # --hints-- 存在`BinarySearchTree`数据结构。 ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } return typeof test == 'object'; })() ); ``` 二叉搜索树有一个名为`isPresent`的方法。 ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } return typeof test.isPresent == 'function'; })() ); ``` `isPresent`方法正确检查添加到树中的元素是否存在。 ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.isPresent !== 'function') { return false; } test.add(4); test.add(7); test.add(411); test.add(452); return ( test.isPresent(452) && test.isPresent(411) && test.isPresent(7) && !test.isPresent(100) ); })() ); ``` `isPresent`处理树为空的情况。 ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.isPresent !== 'function') { return false; } return test.isPresent(5) == false; })() ); ``` # --solutions--