--- title: Gamma function id: 5a23c84252665b21eecc7e76 challengeType: 5 --- ## Description
Implement one algorithm (or more) to compute the Gamma ($\Gamma$) function (in the real field only). The Gamma function can be defined as:
$\Gamma(x) = \displaystyle\int_0^\infty t^{x-1}e^{-t} dt$
## Instructions
## Tests
```yml tests: - text: gamma should be a function. testString: 'assert(typeof gamma==''function'',''gamma should be a function.'')' - text: 'gamma(''+tests[0]+'') should return a number.' testString: 'assert(typeof gamma(tests[0])==''number'',''gamma(''+tests[0]+'') should return a number.'')' - text: 'gamma(''+tests[0]+'') should return ''+results[0]+''.' testString: 'assert.equal(gamma(tests[0]),results[0],''gamma(''+tests[0]+'') should return ''+results[0]+''.'')' - text: 'gamma(''+tests[1]+'') should return ''+results[1]+''.' testString: 'assert.equal(gamma(tests[1]),results[1],''gamma(''+tests[1]+'') should return ''+results[1]+''.'')' - text: 'gamma(''+tests[2]+'') should return ''+results[2]+''.' testString: 'assert.equal(gamma(tests[2]),results[2],''gamma(''+tests[2]+'') should return ''+results[2]+''.'')' - text: 'gamma(''+tests[3]+'') should return ''+results[3]+''.' testString: 'assert.equal(gamma(tests[3]),results[3],''gamma(''+tests[3]+'') should return ''+results[3]+''.'')' - text: 'gamma(''+tests[4]+'') should return ''+results[4]+''.' testString: 'assert.equal(gamma(tests[4]),results[4],''gamma(''+tests[4]+'') should return ''+results[4]+''.'')' ```
## Challenge Seed
```js function gamma (x) { // Good luck! } ```
### After Test
```js console.info('after the test'); ```
## Solution
```js function gamma(x) { var p = [0.99999999999980993, 676.5203681218851, -1259.1392167224028, 771.32342877765313, -176.61502916214059, 12.507343278686905, -0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7 ]; var g = 7; if (x < 0.5) { return Math.PI / (Math.sin(Math.PI * x) * gamma(1 - x)); } x -= 1; var a = p[0]; var t = x + g + 0.5; for (var i = 1; i < p.length; i++) { a += p[i] / (x + i); } var result=Math.sqrt(2 * Math.PI) * Math.pow(t, x + 0.5) * Math.exp(-t) * a; return result; } ```