--- id: 5 localeTitle: 5900f4521000cf542c50ff64 challengeType: 5 title: 'Problem 229: Four Representations using Squares' --- ## Description
Considera el número 3600. Es muy especial, porque 3600 = 482 + 362 3600 = 202 + 2 × 402 3600 = 302 + 3 × 302 3600 = 452 + 7 × 152 Del mismo modo, encontramos que 88201 = 992 + 2802 = 2872 + 2 × 542 = 2832 + 3 × 522 = 1972 + 7 × 842. En 1747, Euler demostró qué números se pueden representar como la suma de dos cuadrados. Estamos interesados ​​en los números n que admiten representaciones de los siguientes cuatro tipos: n = a12 + b12n = a22 + 2 b22n = a32 + 3 b32n = a72 + 7 b72, donde ak y bk son enteros positivos. Hay 75373 números de este tipo que no superan los 107. ¿Cuántos de esos números hay que no superan 2 × 109?
## Instructions
## Tests
```yml tests: - text: euler229() debe devolver 11325263. testString: 'assert.strictEqual(euler229(), 11325263, "euler229() should return 11325263.");' ```
## Challenge Seed
```js function euler229() { // Good luck! return true; } euler229(); ```
## Solution
```js // solution required ```