--- id: 5900f38f1000cf542c50fea2 title: 问题35:循环素数 challengeType: 5 videoUrl: '' dashedName: problem-35-circular-primes --- # --description-- 这个数字197被称为循环素数,因为数字的所有旋转:197,971和719本身都是素数。在100:2,3,5,7,11,13,17,31,37,71,73,79和97之下有十三个这样的素数。在n下面有多少个圆形素数,而100 <= n < = 1000000? # --hints-- `circularPrimes(100)`应该返回13。 ```js assert(circularPrimes(100) == 13); ``` `circularPrimes(100000)`应该返回43。 ```js assert(circularPrimes(100000) == 43); ``` `circularPrimes(250000)`应该返回45。 ```js assert(circularPrimes(250000) == 45); ``` `circularPrimes(500000)`应该返回49。 ```js assert(circularPrimes(500000) == 49); ``` `circularPrimes(750000)`应该返回49。 ```js assert(circularPrimes(750000) == 49); ``` `circularPrimes(1000000)`应该返回55。 ```js assert(circularPrimes(1000000) == 55); ``` # --seed-- ## --seed-contents-- ```js function circularPrimes(n) { return n; } circularPrimes(1000000); ``` # --solutions-- ```js function rotate(n) { if (n.length == 1) return n; return n.slice(1) + n[0]; } function circularPrimes(n) { // Nearest n < 10^k const bound = 10 ** Math.ceil(Math.log10(n)); const primes = [0, 0, 2]; let count = 0; // Making primes array for (let i = 4; i <= bound; i += 2) { primes.push(i - 1); primes.push(0); } // Getting upperbound const upperBound = Math.ceil(Math.sqrt(bound)); // Setting other non-prime numbers to 0 for (let i = 3; i < upperBound; i += 2) { if (primes[i]) { for (let j = i * i; j < bound; j += i) { primes[j] = 0; } } } // Iterating through the array for (let i = 2; i < n; i++) { if (primes[i]) { let curr = String(primes[i]); let tmp = 1; // tmp variable to hold the no of rotations for (let x = rotate(curr); x != curr; x = rotate(x)) { if (x > n && primes[x]) { continue; } else if (!primes[x]) { // If the rotated value is 0 then it isn't a circular prime, break the loop tmp = 0; break; } tmp++; primes[x] = 0; } count += tmp; } } return count; } ```