--- id: 5900f3a11000cf542c50feb4 title: 问题53:组合选择 challengeType: 5 videoUrl: '' dashedName: problem-53-combinatoric-selections --- # --description-- 有十种方法从五种中选择三种,12345:123,124,125,134,135,145,234,235,245和345在组合学中,我们使用符号,5C3 = 10.一般来说, nCr = n!r!(n-r)! ,其中r≤n,n! = n×(n-1)×...×3×2×1和0! = 1。 直到n = 23,一个值超过一百万:23C10 = 1144066.对于1≤n≤100,nCr的多少,不一定是不同的值大于一百万? # --hints-- `combinatoricSelections(1000)`应返回4626。 ```js assert.strictEqual(combinatoricSelections(1000), 4626); ``` `combinatoricSelections(10000)`应该返回4431。 ```js assert.strictEqual(combinatoricSelections(10000), 4431); ``` `combinatoricSelections(100000)`应返回4255。 ```js assert.strictEqual(combinatoricSelections(100000), 4255); ``` `combinatoricSelections(1000000)`应该返回4075。 ```js assert.strictEqual(combinatoricSelections(1000000), 4075); ``` # --seed-- ## --seed-contents-- ```js function combinatoricSelections(limit) { return 1; } combinatoricSelections(1000000); ``` # --solutions-- ```js function combinatoricSelections(limit) { const factorial = n => Array.apply(null, { length: n }) .map((_, i) => i + 1) .reduce((p, c) => p * c, 1); let result = 0; const nMax = 100; for (let n = 1; n <= nMax; n++) { for (let r = 0; r <= n; r++) { if (factorial(n) / (factorial(r) * factorial(n - r)) >= limit) result++; } } return result; } ```