--- id: 5951815dd895584b06884620 title: 给定半径的圆圈通过两个点 challengeType: 5 videoUrl: '' dashedName: circles-of-given-radius-through-two-points --- # --description--

给定平面上的两个点和半径,通常可以通过这些点绘制给定半径的两个圆。

例外:零半径应视为从不描述圆(除非点是重合的)。如果这些点是重合的,则可以绘制无限数量的圆,其圆周上的点可以被绘制,除非半径也等于零,然后将圆圈折叠到一个点。如果点形成直径,则返回单个圆。如果这些点相距太远则无法绘制圆圈。任务:实现一个取两个点和一个半径的函数,并通过这些点返回两个圆。对于每个结果圆,提供每个圆的中心的坐标,四舍五入到四个十进制数字。将每个坐标作为数组返回,并作为数组数组进行坐标。对于边缘情况,请返回以下内容:如果点在直径上,则返回一个点。如果半径也为零,则返回"Radius Zero" 。如果点重合,则返回"Coincident point. Infinite solutions" 。如果点与直径相距更远,则返回"No intersection. Points further apart than circle diameter"更远的"No intersection. Points further apart than circle diameter" 。样本输入:
 p1 p2 r
0.1234,0.9876 0.8765,0.2345 2.0
0.0000,2.000000 0.0000,0.0000 1.0
0.1234,0.9876 0.1234,0.9876 2.0
0.1234,0.9876 0.8765,0.2345 0.5
0.1234,0.9876 0.1234,0.9876 0.0
参考:从数学论坛@Drexel的2点和半径中找到一个圆心 # --hints-- `getCircles`是一个函数。 ```js assert(typeof getCircles === 'function'); ``` `getCircles([0.1234, 0.9876], [0.8765, 0.2345], 2.0)`应该返回`[[1.8631, 1.9742], [-0.8632, -0.7521]]` 。 ```js assert.deepEqual(getCircles(...testCases[0]), answers[0]); ``` `getCircles([0.0000, 2.0000], [0.0000, 0.0000], 1.0)`应该返回`[0, 1]` ```js assert.deepEqual(getCircles(...testCases[1]), answers[1]); ``` `getCircles([0.1234, 0.9876], [0.1234, 0.9876], 2.0)`应返回`Coincident point. Infinite solutions` ```js assert.deepEqual(getCircles(...testCases[2]), answers[2]); ``` `getCircles([0.1234, 0.9876], [0.8765, 0.2345], 0.5)`应返回`No intersection. Points further apart than circle diameter` ```js assert.deepEqual(getCircles(...testCases[3]), answers[3]); ``` `getCircles([0.1234, 0.9876], [0.1234, 0.9876], 0.0)`应返回`Radius Zero` ```js assert.deepEqual(getCircles(...testCases[4]), answers[4]); ``` # --seed-- ## --after-user-code-- ```js const testCases = [ [[0.1234, 0.9876], [0.8765, 0.2345], 2.0], [[0.0000, 2.0000], [0.0000, 0.0000], 1.0], [[0.1234, 0.9876], [0.1234, 0.9876], 2.0], [[0.1234, 0.9876], [0.8765, 0.2345], 0.5], [[0.1234, 0.9876], [0.1234, 0.9876], 0.0] ]; const answers = [ [[1.8631, 1.9742], [-0.8632, -0.7521]], [0, 1], 'Coincident point. Infinite solutions', 'No intersection. Points further apart than circle diameter', 'Radius Zero' ]; ``` ## --seed-contents-- ```js function getCircles(...args) { return true; } ``` # --solutions-- ```js const hDist = (p1, p2) => Math.hypot(...p1.map((e, i) => e - p2[i])) / 2; const pAng = (p1, p2) => Math.atan(p1.map((e, i) => e - p2[i]).reduce((p, c) => c / p, 1)); const solveF = (p, r) => t => [parseFloat((r * Math.cos(t) + p[0]).toFixed(4)), parseFloat((r * Math.sin(t) + p[1]).toFixed(4))]; const diamPoints = (p1, p2) => p1.map((e, i) => parseFloat((e + (p2[i] - e) / 2).toFixed(4))); function getCircles(...args) { const [p1, p2, s] = args; const solve = solveF(p1, s); const halfDist = hDist(p1, p2); let msg = []; switch (Math.sign(s - halfDist)) { case 0: msg = s ? diamPoints(p1, p2) : 'Radius Zero'; break; case 1: if (!halfDist) { msg = 'Coincident point. Infinite solutions'; } else { const theta = pAng(p1, p2); const theta2 = Math.acos(halfDist / s); [1, -1].map(e => solve(theta + e * theta2)).forEach( e => msg.push(e)); } break; case -1: msg = 'No intersection. Points further apart than circle diameter'; break; default: msg = 'Reached the default'; } return msg; } ```