---
title: Gamma function
id: 5a23c84252665b21eecc7e76
challengeType: 5
---
## Description
Implement one algorithm (or more) to compute the Gamma ($\Gamma$) function (in the real field only).
The Gamma function can be defined as:
$\Gamma(x) = \displaystyle\int_0^\infty t^{x-1}e^{-t} dt$
## Instructions
## Tests
```yml
tests:
  - text: gamma should be a function.
    testString: assert(typeof gamma=='function','gamma should be a function.')
  - text: gamma(.1) should return a number.
    testString: assert(typeof gamma(.1)=='number','gamma(.1) should return a number.')
  - text: gamma(.1) should return 9.513507698668736.
    testString: assert.equal(gamma(.1), 9.513507698668736,'gamma(.1) should return 9.513507698668736.')
  - text: gamma(.2) should return 4.590843711998803.
    testString: assert.equal(gamma(.2), 4.590843711998803,'gamma(.2) should return 4.590843711998803.')
  - text: gamma(.3) should return 2.9915689876875904.
    testString: assert.equal(gamma(.3), 2.9915689876875904,'gamma(.3) should return 2.9915689876875904.')
  - text: gamma(.4) should return 2.218159543757687.
    testString: assert.equal(gamma(.4), 2.218159543757687,'gamma(.4) should return 2.218159543757687.')
  - text: gamma(.5) should return 1.7724538509055159.
    testString: assert.equal(gamma(.5), 1.7724538509055159,'gamma(.5) should return 1.7724538509055159.')
```
## Challenge Seed
```js
function gamma (x) {
  // Good luck!
}
```
## Solution
```js
function gamma(x) {
  var p = [0.99999999999980993, 676.5203681218851, -1259.1392167224028,
  771.32342877765313, -176.61502916214059, 12.507343278686905,
  -0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7
  ];
  var g = 7;
  if (x < 0.5) {
    return Math.PI / (Math.sin(Math.PI * x) * gamma(1 - x));
  }
  x -= 1;
  var a = p[0];
  var t = x + g + 0.5;
  for (var i = 1; i < p.length; i++) {
  a += p[i] / (x + i);
  }
  var result=Math.sqrt(2 * Math.PI) * Math.pow(t, x + 0.5) * Math.exp(-t) * a;
  return result;
}
```