--- title: Evaluate binomial coefficients id: 598de241872ef8353c58a7a2 challengeType: 5 forumTopicId: 302259 --- ## Description
Write a function to calculate the binomial coefficient for the given value of n and k. This formula is recommended: $\binom{n}{k} = \frac{n!}{(n-k)!k!} = \frac{n(n-1)(n-2)\ldots(n-k+1)}{k(k-1)(k-2)\ldots 1}$
## Instructions
## Tests
```yml tests: - text: binom should be a function. testString: assert(typeof binom === 'function'); - text: binom(5,3) should return 10. testString: assert.equal(binom(5, 3), 10); - text: binom(7,2) should return 21. testString: assert.equal(binom(7, 2), 21); - text: binom(10,4) should return 210. testString: assert.equal(binom(10, 4), 210); - text: binom(6,1) should return 6. testString: assert.equal(binom(6, 1), 6); - text: binom(12,8) should return 495. testString: assert.equal(binom(12, 8), 495); ```
## Challenge Seed
```js function binom(n, k) { // Good luck! } ```
## Solution
```js function binom(n, k) { let coeff = 1; for (let i = n - k + 1; i <= n; i++) coeff *= i; for (let i = 1; i <= k; i++) coeff /= i; return coeff; } ```