--- id: 5900f3ac1000cf542c50febf title: 问题64:奇数期平方根 challengeType: 5 videoUrl: '' dashedName: problem-64-odd-period-square-roots --- # --description-- 所有平方根都是周期性的,当写为连续分数时,可以写成以下形式: √N= a0 + 1 a1 + 1 a2 + 1 a3 + ...... 例如,让我们考虑√23: √23= 4 +√23 - 4 = 4 + 1 = 4 + 1 1√23-4 1 +√23 - 37 如果我们继续,我们将得到以下扩展: √23= 4 + 1 1 + 1 3 + 1 1 + 1 8 + ...... 该过程可归纳如下: a0 = 4, 1√23-4=√23+ 47 = 1 +√23-37a1 = 1, 7√23-3= 7(√23+ 3)14 = 3 +√23-32a2= 3, 2√23-3= 2(√23+ 3)14 = 1 +√23-47a3 = 1, 7√23-4= 7(√23+ 4)7 = 8 +√23-4a4= 8, 1√23-4=√23+ 47 = 1 +√23-37a5 = 1, 7√23-3= 7(√23+ 3)14 = 3 +√23-32a6= 3, 2√23-3= 2(√23+ 3)14 = 1 +√23-47a7 = 1, 7√23-4= 7(√23+ 4)7 = 8 +√23-4 可以看出序列是重复的。为简明起见,我们使用符号√23= \[4;(1,3,1,8)]来表示块(1,3,1,8)无限重复。 (无理)平方根的前十个连续分数表示为:√2= \[1;(2)],周期=1√3= \[1;(1,2)],周期=2√5= \[2; (4)],期间=1√6= \[2;(2,4)],期间=2√7= \[2;(1,1,1,4)],期间=4√8= \[2; (1,4)],期间=2√10= \[3;(6)],期间=1√11= \[3;(3,6)],期间=2√12= \[3;(2,6 )],period =2√13= \[3;(1,1,1,1,6)],period = 5对于N≤13,恰好四个连续分数具有奇数周期。 N≤10000的连续分数有多少个奇数周期? # --hints-- `euler64()`应返回1322。 ```js assert.strictEqual(euler64(), 1322); ``` # --seed-- ## --seed-contents-- ```js function oddPeriodSqrts() { return true; } oddPeriodSqrts(); ``` # --solutions-- ```js // solution required ```