---
id: 5900f49d1000cf542c50ffb0
challengeType: 5
title: 'Problem 305: Reflexive Position'
---
## Description
Let's call S the (infinite) string that is made by concatenating the consecutive positive integers (starting from 1) written down in base 10.
Thus, S = 1234567891011121314151617181920212223242...
It's easy to see that any number will show up an infinite number of times in S.
Let's call f(n) the starting position of the nth occurrence of n in S.
For example, f(1)=1, f(5)=81, f(12)=271 and f(7780)=111111365.
Find ∑f(3k) for 1≤k≤13.
## Instructions
## Tests
```yml
tests:
- text: euler305() should return 18174995535140.
testString: assert.strictEqual(euler305(), 18174995535140, 'euler305() should return 18174995535140.');
```
## Challenge Seed
```js
function euler305() {
// Good luck!
return true;
}
euler305();
```