---
id: 5900f3ba1000cf542c50fecd
title: 'Problem 78: Coin partitions'
challengeType: 5
forumTopicId: 302191
dashedName: problem-78-coin-partitions
---
# --description--
Let ${p}(n)$ represent the number of different ways in which `n` coins can be separated into piles. For example, five coins can be separated into piles in exactly seven different ways, so ${p}(5) = 7$.
| Coin piles        |
| ----------------- |
| OOOOO             |
| OOOO   O          |
| OOO   OO          |
| OOO   O   O       |
| OO   OO   O       |
| OO   O   O   O    |
| O   O   O   O   O |
Find the least value of `n` for which ${p}(n)$ is divisible by `divisor`.
# --hints--
`coinPartitions(7)` should return a number.
```js
assert(typeof coinPartitions(7) === 'number');
```
`coinPartitions(7)` should return `5`.
```js
assert.strictEqual(coinPartitions(7), 5);
```
`coinPartitions(10000)` should return `599`.
```js
assert.strictEqual(coinPartitions(10000), 599);
```
`coinPartitions(100000)` should return `11224`.
```js
assert.strictEqual(coinPartitions(100000), 11224);
```
`coinPartitions(1000000)` should return `55374`.
```js
assert.strictEqual(coinPartitions(1000000), 55374);
```
# --seed--
## --seed-contents--
```js
function coinPartitions(divisor) {
  return true;
}
coinPartitions(7);
```
# --solutions--
```js
function coinPartitions(divisor) {
  const partitions = [1];
  let n = 0;
  while (partitions[n] !== 0) {
    n++;
    partitions.push(0);
    let i = 0;
    let pentagonal = 1;
    while (pentagonal <= n) {
      const sign = i % 4 > 1 ? -1 : 1;
      partitions[n] += sign * partitions[n - pentagonal];
      partitions[n] = partitions[n] % divisor;
      i++;
      let k = Math.floor(i / 2) + 1;
      if (i % 2 !== 0) {
        k *= -1;
      }
      pentagonal = Math.floor((k * (3 * k - 1)) / 2);
    }
  }
  return n;
}
```