--- title: Evaluate binomial coefficients id: 598de241872ef8353c58a7a2 challengeType: 5 --- ## Description

Write a function to calculate the binomial coefficient for the given value of n and k.

This formula is recommended:

$\binom{n}{k} = \frac{n!}{(n-k)!k!} = \frac{n(n-1)(n-2)\ldots(n-k+1)}{k(k-1)(k-2)\ldots 1}$
## Instructions
## Tests
```yml tests: - text: binom is a function. testString: 'assert(typeof binom === "function", "binom is a function.");' - text: 'binom(5,3) should return 10.' testString: 'assert.equal(binom(5, 3), 10, "binom(5,3) should return 10.");' - text: 'binom(7,2) should return 21.' testString: 'assert.equal(binom(7, 2), 21, "binom(7,2) should return 21.");' - text: 'binom(10,4) should return 210.' testString: 'assert.equal(binom(10, 4), 210, "binom(10,4) should return 210.");' - text: 'binom(6,1) should return 6.' testString: 'assert.equal(binom(6, 1), 6, "binom(6,1) should return 6.");' - text: 'binom(12,8) should return 495.' testString: 'assert.equal(binom(12, 8), 495, "binom(12,8) should return 495.");' ```
## Challenge Seed
```js function binom (n, k) { // Good luck! } ```
## Solution
```js function binom(n, k) { let coeff = 1; for (let i = n - k + 1; i <= n; i++) coeff *= i; for (let i = 1; i <= k; i++) coeff /= i; return coeff; } ```