--- id: 5 localeTitle: 5900f4281000cf542c50ff39 challengeType: 5 title: 'Problem 186: Connectedness of a network' --- ## Description
Aquí están los registros de un sistema telefónico ocupado con un millón de usuarios: RecNrCallerCalled120000710005326001835004393600863701497 ......... El número de teléfono de la persona que llama y el número llamado en el registro n son Caller (n) = S2n-1 y Llamado (n) = S2n donde S1,2,3, ... proviene del "Generador de Fibonacci Rezagado": Para 1 ≤ k ≤ 55, Sk = [100003 - 200003k + 300007k3] (módulo 1000000) Para 56 ≤ k, Sk = [Sk-24 + Sk-55] (módulo 1000000) Si la persona que llama (n) = Called (n), se supone que el usuario ha marcado incorrectamente y la llamada falla; De lo contrario la llamada es exitosa. Desde el inicio de los registros, decimos que cualquier par de usuarios X e Y son amigos si X llama a Y o viceversa. De manera similar, X es amigo de un amigo de Z si X es amigo de Y e Y es amigo de Z; y así sucesivamente para cadenas más largas. El número de teléfono del Primer Ministro es 524287. ¿Después de cuántas llamadas exitosas, sin contar los errores de marcación, el 99% de los usuarios (incluido el Primer Ministro) será un amigo, o un amigo de un amigo, etc., del Primer Ministro?
## Instructions
## Tests
```yml tests: - text: euler186() debe devolver 2325629. testString: 'assert.strictEqual(euler186(), 2325629, "euler186() should return 2325629.");' ```
## Challenge Seed
```js function euler186() { // Good luck! return true; } euler186(); ```
## Solution
```js // solution required ```