---
id: 5900f3ae1000cf542c50fec1
title: 'Problem 66: Diophantine equation'
challengeType: 5
forumTopicId: 302178
dashedName: problem-66-diophantine-equation
---
# --description--
Consider quadratic Diophantine equations of the form:
x2 – Dy2 = 1
For example, when D=13, the minimal solution in x is 6492 – 13×1802 = 1.
It can be assumed that there are no solutions in positive integers when D is square.
By finding minimal solutions in x for D = {2, 3, 5, 6, 7}, we obtain the following:
  32 – 2×22 = 1
  22 – 3×12 = 1
  92 – 5×42 = 1
  52 – 6×22 = 1
  82 – 7×32 = 1
Hence, by considering minimal solutions in `x` for D ≤ 7, the largest `x` is obtained when D=5.
Find the value of D ≤ `n` in minimal solutions of `x` for which the largest value of `x` is obtained.
# --hints--
`diophantineEquation(7)` should return a number.
```js
assert(typeof diophantineEquation(7) === 'number');
```
`diophantineEquation(7)` should return `5`.
```
assert.strictEqual(diophantineEquation(7), 5);
```
`diophantineEquation(100)` should return `61`.
```
assert.strictEqual(diophantineEquation(100), 61);
```
`diophantineEquation(409)` should return `409`.
```
assert.strictEqual(diophantineEquation(409), 409);
```
`diophantineEquation(500)` should return `421`.
```
assert.strictEqual(diophantineEquation(500), 421);
```
`diophantineEquation(1000)` should return `661`.
```js
assert.strictEqual(diophantineEquation(1000), 661);
```
# --seed--
## --seed-contents--
```js
function diophantineEquation(n) {
  return true;
}
diophantineEquation(7);
```
# --solutions--
```js
function diophantineEquation(n) {
  // Based on https://www.mathblog.dk/project-euler-66-diophantine-equation/
  function isSolution(D, numerator, denominator) {
    return numerator * numerator - BigInt(D) * denominator * denominator === 1n;
  }
  let result = 0;
  let biggestX = 0;
  for (let D = 2; D <= n; D++) {
    let boundary = Math.floor(Math.sqrt(D));
    if (boundary ** 2 === D) {
      continue;
    }
    let m = 0n;
    let d = 1n;
    let a = BigInt(boundary);
    let [numerator, prevNumerator] = [a, 1n];
    let [denominator, prevDenominator] = [1n, 0n];
    while (!isSolution(D, numerator, denominator)) {
      m = d * a - m;
      d = (BigInt(D) - m * m) / d;
      a = (BigInt(boundary) + m) / d;
      [numerator, prevNumerator] = [a * numerator + prevNumerator, numerator];
      [denominator, prevDenominator] = [
        a * denominator + prevDenominator,
        denominator
      ];
    }
    if (numerator > biggestX) {
      biggestX = numerator;
      result = D;
    }
  }
  return result;
}
```