---
id: 5900f3781000cf542c50fe8b
title: 'Problem 12: Highly divisible triangular number'
challengeType: 5
forumTopicId: 301746
dashedName: problem-12-highly-divisible-triangular-number
---
# --description--
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1, 3
6: 1, 2, 3, 6
10: 1, 2, 5, 10
15: 1, 3, 5, 15
21: 1, 3, 7, 21
28: 1, 2, 4, 7, 14, 28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over `n` divisors?
# --hints--
`divisibleTriangleNumber(5)` should return a number.
```js
assert(typeof divisibleTriangleNumber(5) === 'number');
```
`divisibleTriangleNumber(5)` should return 28.
```js
assert.strictEqual(divisibleTriangleNumber(5), 28);
```
`divisibleTriangleNumber(23)` should return 630.
```js
assert.strictEqual(divisibleTriangleNumber(23), 630);
```
`divisibleTriangleNumber(167)` should return 1385280.
```js
assert.strictEqual(divisibleTriangleNumber(167), 1385280);
```
`divisibleTriangleNumber(374)` should return 17907120.
```js
assert.strictEqual(divisibleTriangleNumber(374), 17907120);
```
`divisibleTriangleNumber(500)` should return 76576500.
```js
assert.strictEqual(divisibleTriangleNumber(500), 76576500);
```
# --seed--
## --seed-contents--
```js
function divisibleTriangleNumber(n) {
  return true;
}
divisibleTriangleNumber(500);
```
# --solutions--
```js
function divisibleTriangleNumber(n) {
  if (n === 1) return 3;
  let counter = 1;
  let triangleNumber = counter++;
 while (noOfFactors(triangleNumber) < n) {
   triangleNumber += counter++;
 }
return triangleNumber;
}
function noOfFactors(num) {
  const primeFactors = getPrimeFactors(num);
  let prod = 1;
  for(let p in primeFactors) {
    prod *= (primeFactors[p] + 1)
  }
  return prod;
}
function getPrimeFactors(num) {
  let n = num;
  let primes = {};
  let p = 2;
  let sqrt = Math.sqrt(num);
  function checkAndUpdate(inc) {
    if (n % p === 0) {
      const curr = primes[p];
      if (curr) {
        primes[p]++
      } else {
        primes[p] = 1;
      }
      n /= p;
    } else {
      p += inc;
    }
  }
  while(p === 2 && p <= n) {
    checkAndUpdate(1);
  }
  while (p <= n && p <= sqrt) {
    checkAndUpdate(2);
  }
  if(Object.keys(primes).length === 0) {
    primes[num] = 1;
  } else if(n !== 1) {
    primes[n] = 1;
  }
  return primes;
}
```