--- id: 5900f49d1000cf542c50ffb0 challengeType: 5 title: 'Problem 305: Reflexive Position' forumTopicId: 301959 --- ## Description
Let's call S the (infinite) string that is made by concatenating the consecutive positive integers (starting from 1) written down in base 10. Thus, S = 1234567891011121314151617181920212223242... It's easy to see that any number will show up an infinite number of times in S. Let's call f(n) the starting position of the nth occurrence of n in S. For example, f(1)=1, f(5)=81, f(12)=271 and f(7780)=111111365. Find ∑f(3k) for 1≤k≤13.
## Instructions
## Tests
```yml tests: - text: euler305() should return 18174995535140. testString: assert.strictEqual(euler305(), 18174995535140); ```
## Challenge Seed
```js function euler305() { // Good luck! return true; } euler305(); ```
## Solution
```js // solution required ```