Files
freeCodeCamp/guide/arabic/algorithms/search-algorithms/exponential-search/index.md
2019-06-20 16:33:33 -05:00

3.0 KiB

title, localeTitle
title localeTitle
Exponential Search البحث الأسي

البحث الأسي

يُعرف البحث الأسي أيضًا باسم البحث الإصبعي ، ويبحث عن عنصر في مصفوفة تم فرزها بالقفز على عناصر 2^i كل تكرار حيث أقوم بتمثيل قيمة متغير التحكم في الحلقة ، ومن ثم التحقق مما إذا كان عنصر البحث موجودًا بين الانتقال الأخير والقفزة الحالية

حالة التعقيد الأسوأ

O (سجل (N)) كثيرًا ما يتم الخلط بسبب الاسم ، ويتم تسمية الخوارزمية ليس بسبب تعقيد الوقت. ينشأ الاسم كنتيجة لعناصر القفز الخوارزمية بخطوات تساوي 2 من الأسس

أعمال

  1. اقفز إلى المصفوفة 2^i في كل مرة تبحث عن الحالة Array[2^(i-1)] < valueWanted < Array[2^i] . إذا كان 2^i أكبر من طول الصفيف ، قم بتعيين الحد الأعلى لطول الصفيف.
  2. قم بإجراء بحث ثنائي بين Array[2^(i-1)] و Array[2^i]

الشفرة

// C++ program to find an element x in a
// sorted array using Exponential search.
#include <bits/stdc++.h>
using namespace std;

int binarySearch(int arr[], int, int, int);

// Returns position of first ocurrence of
// x in array
int exponentialSearch(int arr[], int n, int x)
{
    // If x is present at firt location itself
    if (arr[0] == x)
        return 0;

    // Find range for binary search by
    // repeated doubling
    int i = 1;
    while (i < n && arr[i] <= x)
        i = i*2;

    //  Call binary search for the found range.
    return binarySearch(arr, i/2, min(i, n), x);
}

// A recursive binary search function. It returns
// location of x in  given array arr[l..r] is
// present, otherwise -1
int binarySearch(int arr[], int l, int r, int x)
{
    if (r >= l)
    {
        int mid = l + (r - l)/2;

        // If the element is present at the middle
        // itself
        if (arr[mid] == x)
            return mid;

        // If element is smaller than mid, then it
        // can only be present n left subarray
        if (arr[mid] > x)
            return binarySearch(arr, l, mid-1, x);

        // Else the element can only be present
        // in right subarray
        return binarySearch(arr, mid+1, r, x);
    }

    // We reach here when element is not present
    // in array
    return -1;
}

int main(void)
{
   int arr[] = {2, 3, 4, 10, 40};
   int n = sizeof(arr)/ sizeof(arr[0]);
   int x = 10;
   int result = exponentialSearch(arr, n, x);
   (result == -1)? printf("Element is not present in array")
                 : printf("Element is present at index %d", result);
   return 0;
}

معلومات اكثر

قروض

تنفيذ C ++