364 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
		
		
			
		
	
	
			364 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
|   | package crypto | ||
|  | 
 | ||
|  | // Copyright 2010 The Go Authors. All rights reserved. | ||
|  | // Copyright 2011 ThePiachu. All rights reserved. | ||
|  | // Use of this source code is governed by a BSD-style | ||
|  | // license that can be found in the LICENSE file. | ||
|  | 
 | ||
|  | // Package bitelliptic implements several Koblitz elliptic curves over prime | ||
|  | // fields. | ||
|  | 
 | ||
|  | // This package operates, internally, on Jacobian coordinates. For a given | ||
|  | // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) | ||
|  | // where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole | ||
|  | // calculation can be performed within the transform (as in ScalarMult and | ||
|  | // ScalarBaseMult). But even for Add and Double, it's faster to apply and | ||
|  | // reverse the transform than to operate in affine coordinates. | ||
|  | 
 | ||
|  | import ( | ||
|  | 	"crypto/elliptic" | ||
|  | 	"io" | ||
|  | 	"math/big" | ||
|  | 	"sync" | ||
|  | ) | ||
|  | 
 | ||
|  | // A BitCurve represents a Koblitz Curve with a=0. | ||
|  | // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html | ||
|  | type BitCurve struct { | ||
|  | 	P       *big.Int // the order of the underlying field | ||
|  | 	N       *big.Int // the order of the base point | ||
|  | 	B       *big.Int // the constant of the BitCurve equation | ||
|  | 	Gx, Gy  *big.Int // (x,y) of the base point | ||
|  | 	BitSize int      // the size of the underlying field | ||
|  | } | ||
|  | 
 | ||
|  | func (BitCurve *BitCurve) Params() *elliptic.CurveParams { | ||
|  | 	return &elliptic.CurveParams{BitCurve.P, BitCurve.N, BitCurve.B, BitCurve.Gx, BitCurve.Gy, BitCurve.BitSize} | ||
|  | } | ||
|  | 
 | ||
|  | // IsOnBitCurve returns true if the given (x,y) lies on the BitCurve. | ||
|  | func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { | ||
|  | 	// y² = x³ + b | ||
|  | 	y2 := new(big.Int).Mul(y, y) //y² | ||
|  | 	y2.Mod(y2, BitCurve.P)       //y²%P | ||
|  | 
 | ||
|  | 	x3 := new(big.Int).Mul(x, x) //x² | ||
|  | 	x3.Mul(x3, x)                //x³ | ||
|  | 
 | ||
|  | 	x3.Add(x3, BitCurve.B) //x³+B | ||
|  | 	x3.Mod(x3, BitCurve.P) //(x³+B)%P | ||
|  | 
 | ||
|  | 	return x3.Cmp(y2) == 0 | ||
|  | } | ||
|  | 
 | ||
|  | //TODO: double check if the function is okay | ||
|  | // affineFromJacobian reverses the Jacobian transform. See the comment at the | ||
|  | // top of the file. | ||
|  | func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { | ||
|  | 	zinv := new(big.Int).ModInverse(z, BitCurve.P) | ||
|  | 	zinvsq := new(big.Int).Mul(zinv, zinv) | ||
|  | 
 | ||
|  | 	xOut = new(big.Int).Mul(x, zinvsq) | ||
|  | 	xOut.Mod(xOut, BitCurve.P) | ||
|  | 	zinvsq.Mul(zinvsq, zinv) | ||
|  | 	yOut = new(big.Int).Mul(y, zinvsq) | ||
|  | 	yOut.Mod(yOut, BitCurve.P) | ||
|  | 	return | ||
|  | } | ||
|  | 
 | ||
|  | // Add returns the sum of (x1,y1) and (x2,y2) | ||
|  | func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { | ||
|  | 	z := new(big.Int).SetInt64(1) | ||
|  | 	return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) | ||
|  | } | ||
|  | 
 | ||
|  | // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and | ||
|  | // (x2, y2, z2) and returns their sum, also in Jacobian form. | ||
|  | func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { | ||
|  | 	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl | ||
|  | 	z1z1 := new(big.Int).Mul(z1, z1) | ||
|  | 	z1z1.Mod(z1z1, BitCurve.P) | ||
|  | 	z2z2 := new(big.Int).Mul(z2, z2) | ||
|  | 	z2z2.Mod(z2z2, BitCurve.P) | ||
|  | 
 | ||
|  | 	u1 := new(big.Int).Mul(x1, z2z2) | ||
|  | 	u1.Mod(u1, BitCurve.P) | ||
|  | 	u2 := new(big.Int).Mul(x2, z1z1) | ||
|  | 	u2.Mod(u2, BitCurve.P) | ||
|  | 	h := new(big.Int).Sub(u2, u1) | ||
|  | 	if h.Sign() == -1 { | ||
|  | 		h.Add(h, BitCurve.P) | ||
|  | 	} | ||
|  | 	i := new(big.Int).Lsh(h, 1) | ||
|  | 	i.Mul(i, i) | ||
|  | 	j := new(big.Int).Mul(h, i) | ||
|  | 
 | ||
|  | 	s1 := new(big.Int).Mul(y1, z2) | ||
|  | 	s1.Mul(s1, z2z2) | ||
|  | 	s1.Mod(s1, BitCurve.P) | ||
|  | 	s2 := new(big.Int).Mul(y2, z1) | ||
|  | 	s2.Mul(s2, z1z1) | ||
|  | 	s2.Mod(s2, BitCurve.P) | ||
|  | 	r := new(big.Int).Sub(s2, s1) | ||
|  | 	if r.Sign() == -1 { | ||
|  | 		r.Add(r, BitCurve.P) | ||
|  | 	} | ||
|  | 	r.Lsh(r, 1) | ||
|  | 	v := new(big.Int).Mul(u1, i) | ||
|  | 
 | ||
|  | 	x3 := new(big.Int).Set(r) | ||
|  | 	x3.Mul(x3, x3) | ||
|  | 	x3.Sub(x3, j) | ||
|  | 	x3.Sub(x3, v) | ||
|  | 	x3.Sub(x3, v) | ||
|  | 	x3.Mod(x3, BitCurve.P) | ||
|  | 
 | ||
|  | 	y3 := new(big.Int).Set(r) | ||
|  | 	v.Sub(v, x3) | ||
|  | 	y3.Mul(y3, v) | ||
|  | 	s1.Mul(s1, j) | ||
|  | 	s1.Lsh(s1, 1) | ||
|  | 	y3.Sub(y3, s1) | ||
|  | 	y3.Mod(y3, BitCurve.P) | ||
|  | 
 | ||
|  | 	z3 := new(big.Int).Add(z1, z2) | ||
|  | 	z3.Mul(z3, z3) | ||
|  | 	z3.Sub(z3, z1z1) | ||
|  | 	if z3.Sign() == -1 { | ||
|  | 		z3.Add(z3, BitCurve.P) | ||
|  | 	} | ||
|  | 	z3.Sub(z3, z2z2) | ||
|  | 	if z3.Sign() == -1 { | ||
|  | 		z3.Add(z3, BitCurve.P) | ||
|  | 	} | ||
|  | 	z3.Mul(z3, h) | ||
|  | 	z3.Mod(z3, BitCurve.P) | ||
|  | 
 | ||
|  | 	return x3, y3, z3 | ||
|  | } | ||
|  | 
 | ||
|  | // Double returns 2*(x,y) | ||
|  | func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { | ||
|  | 	z1 := new(big.Int).SetInt64(1) | ||
|  | 	return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) | ||
|  | } | ||
|  | 
 | ||
|  | // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and | ||
|  | // returns its double, also in Jacobian form. | ||
|  | func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { | ||
|  | 	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l | ||
|  | 
 | ||
|  | 	a := new(big.Int).Mul(x, x) //X1² | ||
|  | 	b := new(big.Int).Mul(y, y) //Y1² | ||
|  | 	c := new(big.Int).Mul(b, b) //B² | ||
|  | 
 | ||
|  | 	d := new(big.Int).Add(x, b) //X1+B | ||
|  | 	d.Mul(d, d)                 //(X1+B)² | ||
|  | 	d.Sub(d, a)                 //(X1+B)²-A | ||
|  | 	d.Sub(d, c)                 //(X1+B)²-A-C | ||
|  | 	d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C) | ||
|  | 
 | ||
|  | 	e := new(big.Int).Mul(big.NewInt(3), a) //3*A | ||
|  | 	f := new(big.Int).Mul(e, e)             //E² | ||
|  | 
 | ||
|  | 	x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D | ||
|  | 	x3.Sub(f, x3)                            //F-2*D | ||
|  | 	x3.Mod(x3, BitCurve.P) | ||
|  | 
 | ||
|  | 	y3 := new(big.Int).Sub(d, x3)                  //D-X3 | ||
|  | 	y3.Mul(e, y3)                                  //E*(D-X3) | ||
|  | 	y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C | ||
|  | 	y3.Mod(y3, BitCurve.P) | ||
|  | 
 | ||
|  | 	z3 := new(big.Int).Mul(y, z) //Y1*Z1 | ||
|  | 	z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1 | ||
|  | 	z3.Mod(z3, BitCurve.P) | ||
|  | 
 | ||
|  | 	return x3, y3, z3 | ||
|  | } | ||
|  | 
 | ||
|  | //TODO: double check if it is okay | ||
|  | // ScalarMult returns k*(Bx,By) where k is a number in big-endian form. | ||
|  | func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { | ||
|  | 	// We have a slight problem in that the identity of the group (the | ||
|  | 	// point at infinity) cannot be represented in (x, y) form on a finite | ||
|  | 	// machine. Thus the standard add/double algorithm has to be tweaked | ||
|  | 	// slightly: our initial state is not the identity, but x, and we | ||
|  | 	// ignore the first true bit in |k|.  If we don't find any true bits in | ||
|  | 	// |k|, then we return nil, nil, because we cannot return the identity | ||
|  | 	// element. | ||
|  | 
 | ||
|  | 	Bz := new(big.Int).SetInt64(1) | ||
|  | 	x := Bx | ||
|  | 	y := By | ||
|  | 	z := Bz | ||
|  | 
 | ||
|  | 	seenFirstTrue := false | ||
|  | 	for _, byte := range k { | ||
|  | 		for bitNum := 0; bitNum < 8; bitNum++ { | ||
|  | 			if seenFirstTrue { | ||
|  | 				x, y, z = BitCurve.doubleJacobian(x, y, z) | ||
|  | 			} | ||
|  | 			if byte&0x80 == 0x80 { | ||
|  | 				if !seenFirstTrue { | ||
|  | 					seenFirstTrue = true | ||
|  | 				} else { | ||
|  | 					x, y, z = BitCurve.addJacobian(Bx, By, Bz, x, y, z) | ||
|  | 				} | ||
|  | 			} | ||
|  | 			byte <<= 1 | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if !seenFirstTrue { | ||
|  | 		return nil, nil | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return BitCurve.affineFromJacobian(x, y, z) | ||
|  | } | ||
|  | 
 | ||
|  | // ScalarBaseMult returns k*G, where G is the base point of the group and k is | ||
|  | // an integer in big-endian form. | ||
|  | func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { | ||
|  | 	return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) | ||
|  | } | ||
|  | 
 | ||
|  | var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f} | ||
|  | 
 | ||
|  | //TODO: double check if it is okay | ||
|  | // GenerateKey returns a public/private key pair. The private key is generated | ||
|  | // using the given reader, which must return random data. | ||
|  | func (BitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) { | ||
|  | 	byteLen := (BitCurve.BitSize + 7) >> 3 | ||
|  | 	priv = make([]byte, byteLen) | ||
|  | 
 | ||
|  | 	for x == nil { | ||
|  | 		_, err = io.ReadFull(rand, priv) | ||
|  | 		if err != nil { | ||
|  | 			return | ||
|  | 		} | ||
|  | 		// We have to mask off any excess bits in the case that the size of the | ||
|  | 		// underlying field is not a whole number of bytes. | ||
|  | 		priv[0] &= mask[BitCurve.BitSize%8] | ||
|  | 		// This is because, in tests, rand will return all zeros and we don't | ||
|  | 		// want to get the point at infinity and loop forever. | ||
|  | 		priv[1] ^= 0x42 | ||
|  | 		x, y = BitCurve.ScalarBaseMult(priv) | ||
|  | 	} | ||
|  | 	return | ||
|  | } | ||
|  | 
 | ||
|  | // Marshal converts a point into the form specified in section 4.3.6 of ANSI | ||
|  | // X9.62. | ||
|  | func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { | ||
|  | 	byteLen := (BitCurve.BitSize + 7) >> 3 | ||
|  | 
 | ||
|  | 	ret := make([]byte, 1+2*byteLen) | ||
|  | 	ret[0] = 4 // uncompressed point | ||
|  | 
 | ||
|  | 	xBytes := x.Bytes() | ||
|  | 	copy(ret[1+byteLen-len(xBytes):], xBytes) | ||
|  | 	yBytes := y.Bytes() | ||
|  | 	copy(ret[1+2*byteLen-len(yBytes):], yBytes) | ||
|  | 	return ret | ||
|  | } | ||
|  | 
 | ||
|  | // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On | ||
|  | // error, x = nil. | ||
|  | func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { | ||
|  | 	byteLen := (BitCurve.BitSize + 7) >> 3 | ||
|  | 	if len(data) != 1+2*byteLen { | ||
|  | 		return | ||
|  | 	} | ||
|  | 	if data[0] != 4 { // uncompressed form | ||
|  | 		return | ||
|  | 	} | ||
|  | 	x = new(big.Int).SetBytes(data[1 : 1+byteLen]) | ||
|  | 	y = new(big.Int).SetBytes(data[1+byteLen:]) | ||
|  | 	return | ||
|  | } | ||
|  | 
 | ||
|  | //curve parameters taken from: | ||
|  | //http://www.secg.org/collateral/sec2_final.pdf | ||
|  | 
 | ||
|  | var initonce sync.Once | ||
|  | var ecp160k1 *BitCurve | ||
|  | var ecp192k1 *BitCurve | ||
|  | var ecp224k1 *BitCurve | ||
|  | var ecp256k1 *BitCurve | ||
|  | 
 | ||
|  | func initAll() { | ||
|  | 	initS160() | ||
|  | 	initS192() | ||
|  | 	initS224() | ||
|  | 	initS256() | ||
|  | } | ||
|  | 
 | ||
|  | func initS160() { | ||
|  | 	// See SEC 2 section 2.4.1 | ||
|  | 	ecp160k1 = new(BitCurve) | ||
|  | 	ecp160k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73", 16) | ||
|  | 	ecp160k1.N, _ = new(big.Int).SetString("0100000000000000000001B8FA16DFAB9ACA16B6B3", 16) | ||
|  | 	ecp160k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000007", 16) | ||
|  | 	ecp160k1.Gx, _ = new(big.Int).SetString("3B4C382CE37AA192A4019E763036F4F5DD4D7EBB", 16) | ||
|  | 	ecp160k1.Gy, _ = new(big.Int).SetString("938CF935318FDCED6BC28286531733C3F03C4FEE", 16) | ||
|  | 	ecp160k1.BitSize = 160 | ||
|  | } | ||
|  | 
 | ||
|  | func initS192() { | ||
|  | 	// See SEC 2 section 2.5.1 | ||
|  | 	ecp192k1 = new(BitCurve) | ||
|  | 	ecp192k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", 16) | ||
|  | 	ecp192k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 16) | ||
|  | 	ecp192k1.B, _ = new(big.Int).SetString("000000000000000000000000000000000000000000000003", 16) | ||
|  | 	ecp192k1.Gx, _ = new(big.Int).SetString("DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D", 16) | ||
|  | 	ecp192k1.Gy, _ = new(big.Int).SetString("9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D", 16) | ||
|  | 	ecp192k1.BitSize = 192 | ||
|  | } | ||
|  | 
 | ||
|  | func initS224() { | ||
|  | 	// See SEC 2 section 2.6.1 | ||
|  | 	ecp224k1 = new(BitCurve) | ||
|  | 	ecp224k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", 16) | ||
|  | 	ecp224k1.N, _ = new(big.Int).SetString("010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 16) | ||
|  | 	ecp224k1.B, _ = new(big.Int).SetString("00000000000000000000000000000000000000000000000000000005", 16) | ||
|  | 	ecp224k1.Gx, _ = new(big.Int).SetString("A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C", 16) | ||
|  | 	ecp224k1.Gy, _ = new(big.Int).SetString("7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5", 16) | ||
|  | 	ecp224k1.BitSize = 224 | ||
|  | } | ||
|  | 
 | ||
|  | func initS256() { | ||
|  | 	// See SEC 2 section 2.7.1 | ||
|  | 	ecp256k1 = new(BitCurve) | ||
|  | 	ecp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) | ||
|  | 	ecp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) | ||
|  | 	ecp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16) | ||
|  | 	ecp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16) | ||
|  | 	ecp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16) | ||
|  | 	ecp256k1.BitSize = 256 | ||
|  | } | ||
|  | 
 | ||
|  | // S160 returns a BitCurve which implements secp160k1 (see SEC 2 section 2.4.1) | ||
|  | func S160() *BitCurve { | ||
|  | 	initonce.Do(initAll) | ||
|  | 	return ecp160k1 | ||
|  | } | ||
|  | 
 | ||
|  | // S192 returns a BitCurve which implements secp192k1 (see SEC 2 section 2.5.1) | ||
|  | func S192() *BitCurve { | ||
|  | 	initonce.Do(initAll) | ||
|  | 	return ecp192k1 | ||
|  | } | ||
|  | 
 | ||
|  | // S224 returns a BitCurve which implements secp224k1 (see SEC 2 section 2.6.1) | ||
|  | func S224() *BitCurve { | ||
|  | 	initonce.Do(initAll) | ||
|  | 	return ecp224k1 | ||
|  | } | ||
|  | 
 | ||
|  | // S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1) | ||
|  | func S256() *BitCurve { | ||
|  | 	initonce.Do(initAll) | ||
|  | 	return ecp256k1 | ||
|  | } |