// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package jsre
const Web3_JS = `
require=(function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]);return s})({1:[function(require,module,exports){
module.exports=[
{
"constant": true,
"inputs": [
"name": "_owner",
"type": "address"
}
],
"name": "name",
"outputs": [
"name": "o_name",
"type": "bytes32"
"type": "function"
},
"name": "_name",
"name": "owner",
"name": "",
"name": "content",
"name": "addr",
"constant": false,
"name": "reserve",
"outputs": [],
"name": "subRegistrar",
"name": "_newOwner",
"name": "transfer",
"name": "_registrar",
"name": "setSubRegistrar",
"inputs": [],
"name": "Registrar",
"name": "_a",
"name": "_primary",
"type": "bool"
"name": "setAddress",
"name": "_content",
"name": "setContent",
"name": "disown",
"anonymous": false,
"indexed": true,
"indexed": false,
"name": "_winner",
"name": "AuctionEnded",
"type": "event"
"name": "_bidder",
"name": "_value",
"type": "uint256"
"name": "NewBid",
"name": "Changed",
"name": "PrimaryChanged",
]
},{}],2:[function(require,module,exports){
"name": "_refund",
"name": "setAddr",
},{}],3:[function(require,module,exports){
"name": "from",
"name": "to",
"name": "value",
"name": "indirectId",
"name": "icapTransfer",
"name": "deposit",
"name": "AnonymousDeposit",
"name": "Deposit",
"name": "Transfer",
"name": "IcapTransfer",
},{}],4:[function(require,module,exports){
var f = require('./formatters');
var SolidityType = require('./type');
/**
* SolidityTypeAddress is a prootype that represents address type
* It matches:
* address
* address[]
* address[4]
* address[][]
* address[3][]
* address[][6][], ...
*/
var SolidityTypeAddress = function () {
this._inputFormatter = f.formatInputInt;
this._outputFormatter = f.formatOutputAddress;
};
SolidityTypeAddress.prototype = new SolidityType({});
SolidityTypeAddress.prototype.constructor = SolidityTypeAddress;
SolidityTypeAddress.prototype.isType = function (name) {
return !!name.match(/address(\[([0-9]*)\])?/);
SolidityTypeAddress.prototype.staticPartLength = function (name) {
return 32 * this.staticArrayLength(name);
module.exports = SolidityTypeAddress;
},{"./formatters":9,"./type":14}],5:[function(require,module,exports){
* SolidityTypeBool is a prootype that represents bool type
* bool
* bool[]
* bool[4]
* bool[][]
* bool[3][]
* bool[][6][], ...
var SolidityTypeBool = function () {
this._inputFormatter = f.formatInputBool;
this._outputFormatter = f.formatOutputBool;
SolidityTypeBool.prototype = new SolidityType({});
SolidityTypeBool.prototype.constructor = SolidityTypeBool;
SolidityTypeBool.prototype.isType = function (name) {
return !!name.match(/^bool(\[([0-9]*)\])*$/);
SolidityTypeBool.prototype.staticPartLength = function (name) {
module.exports = SolidityTypeBool;
},{"./formatters":9,"./type":14}],6:[function(require,module,exports){
* SolidityTypeBytes is a prootype that represents bytes type
* bytes
* bytes[]
* bytes[4]
* bytes[][]
* bytes[3][]
* bytes[][6][], ...
* bytes32
* bytes64[]
* bytes8[4]
* bytes256[][]
* bytes64[][6][], ...
var SolidityTypeBytes = function () {
this._inputFormatter = f.formatInputBytes;
this._outputFormatter = f.formatOutputBytes;
SolidityTypeBytes.prototype = new SolidityType({});
SolidityTypeBytes.prototype.constructor = SolidityTypeBytes;
SolidityTypeBytes.prototype.isType = function (name) {
return !!name.match(/^bytes([0-9]{1,})(\[([0-9]*)\])*$/);
SolidityTypeBytes.prototype.staticPartLength = function (name) {
var matches = name.match(/^bytes([0-9]*)/);
var size = parseInt(matches[1]);
return size * this.staticArrayLength(name);
module.exports = SolidityTypeBytes;
},{"./formatters":9,"./type":14}],7:[function(require,module,exports){
/*
This file is part of web3.js.
web3.js is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
web3.js is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with web3.js. If not, see <http://www.gnu.org/licenses/>.
* @file coder.js
* @author Marek Kotewicz <marek@ethdev.com>
* @date 2015
var SolidityTypeAddress = require('./address');
var SolidityTypeBool = require('./bool');
var SolidityTypeInt = require('./int');
var SolidityTypeUInt = require('./uint');
var SolidityTypeDynamicBytes = require('./dynamicbytes');
var SolidityTypeString = require('./string');
var SolidityTypeReal = require('./real');
var SolidityTypeUReal = require('./ureal');
var SolidityTypeBytes = require('./bytes');
* SolidityCoder prototype should be used to encode/decode solidity params of any type
var SolidityCoder = function (types) {
this._types = types;
* This method should be used to transform type to SolidityType
*
* @method _requireType
* @param {String} type
* @returns {SolidityType}
* @throws {Error} throws if no matching type is found
SolidityCoder.prototype._requireType = function (type) {
var solidityType = this._types.filter(function (t) {
return t.isType(type);
})[0];
if (!solidityType) {
throw Error('invalid solidity type!: ' + type);
return solidityType;
* Should be used to encode plain param
* @method encodeParam
* @param {Object} plain param
* @return {String} encoded plain param
SolidityCoder.prototype.encodeParam = function (type, param) {
return this.encodeParams([type], [param]);
* Should be used to encode list of params
* @method encodeParams
* @param {Array} types
* @param {Array} params
* @return {String} encoded list of params
SolidityCoder.prototype.encodeParams = function (types, params) {
var solidityTypes = this.getSolidityTypes(types);
var encodeds = solidityTypes.map(function (solidityType, index) {
return solidityType.encode(params[index], types[index]);
});
var dynamicOffset = solidityTypes.reduce(function (acc, solidityType, index) {
var staticPartLength = solidityType.staticPartLength(types[index]);
var roundedStaticPartLength = Math.floor((staticPartLength + 31) / 32) * 32;
return acc + roundedStaticPartLength;
}, 0);
var result = this.encodeMultiWithOffset(types, solidityTypes, encodeds, dynamicOffset);
return result;
SolidityCoder.prototype.encodeMultiWithOffset = function (types, solidityTypes, encodeds, dynamicOffset) {
var result = "";
var self = this;
var isDynamic = function (i) {
return solidityTypes[i].isDynamicArray(types[i]) || solidityTypes[i].isDynamicType(types[i]);
types.forEach(function (type, i) {
if (isDynamic(i)) {
result += f.formatInputInt(dynamicOffset).encode();
var e = self.encodeWithOffset(types[i], solidityTypes[i], encodeds[i], dynamicOffset);
dynamicOffset += e.length / 2;
} else {
// don't add length to dynamicOffset. it's already counted
result += self.encodeWithOffset(types[i], solidityTypes[i], encodeds[i], dynamicOffset);
// TODO: figure out nested arrays
result += e;
// TODO: refactor whole encoding!
SolidityCoder.prototype.encodeWithOffset = function (type, solidityType, encoded, offset) {
if (solidityType.isDynamicArray(type)) {
return (function () {
// offset was already set
var nestedName = solidityType.nestedName(type);
var nestedStaticPartLength = solidityType.staticPartLength(nestedName);
var result = encoded[0];
(function () {
var previousLength = 2; // in int
if (solidityType.isDynamicArray(nestedName)) {
for (var i = 1; i < encoded.length; i++) {
previousLength += +(encoded[i - 1])[0] || 0;
result += f.formatInputInt(offset + i * nestedStaticPartLength + previousLength * 32).encode();
})();
// first element is length, skip it
for (var i = 0; i < encoded.length - 1; i++) {
var additionalOffset = result / 2;
result += self.encodeWithOffset(nestedName, solidityType, encoded[i + 1], offset + additionalOffset);
} else if (solidityType.isStaticArray(type)) {
var previousLength = 0; // in int
for (var i = 0; i < encoded.length; i++) {
// calculate length of previous item
previousLength += +(encoded[i - 1] || [])[0] || 0;
result += self.encodeWithOffset(nestedName, solidityType, encoded[i], offset + additionalOffset);
return encoded;
* Should be used to decode bytes to plain param
* @method decodeParam
* @param {String} bytes
* @return {Object} plain param
SolidityCoder.prototype.decodeParam = function (type, bytes) {
return this.decodeParams([type], bytes)[0];
* Should be used to decode list of params
* @return {Array} array of plain params
SolidityCoder.prototype.decodeParams = function (types, bytes) {
var offsets = this.getOffsets(types, solidityTypes);
return solidityTypes.map(function (solidityType, index) {
return solidityType.decode(bytes, offsets[index], types[index], index);
SolidityCoder.prototype.getOffsets = function (types, solidityTypes) {
var lengths = solidityTypes.map(function (solidityType, index) {
return solidityType.staticPartLength(types[index]);
for (var i = 1; i < lengths.length; i++) {
// sum with length of previous element
lengths[i] += lengths[i - 1];
return lengths.map(function (length, index) {
// remove the current length, so the length is sum of previous elements
var staticPartLength = solidityTypes[index].staticPartLength(types[index]);
return length - staticPartLength;
SolidityCoder.prototype.getSolidityTypes = function (types) {
return types.map(function (type) {
return self._requireType(type);
var coder = new SolidityCoder([
new SolidityTypeAddress(),
new SolidityTypeBool(),
new SolidityTypeInt(),
new SolidityTypeUInt(),
new SolidityTypeDynamicBytes(),
new SolidityTypeBytes(),
new SolidityTypeString(),
new SolidityTypeReal(),
new SolidityTypeUReal()
]);
module.exports = coder;
},{"./address":4,"./bool":5,"./bytes":6,"./dynamicbytes":8,"./formatters":9,"./int":10,"./real":12,"./string":13,"./uint":15,"./ureal":16}],8:[function(require,module,exports){
var SolidityTypeDynamicBytes = function () {
this._inputFormatter = f.formatInputDynamicBytes;
this._outputFormatter = f.formatOutputDynamicBytes;
SolidityTypeDynamicBytes.prototype = new SolidityType({});
SolidityTypeDynamicBytes.prototype.constructor = SolidityTypeDynamicBytes;
SolidityTypeDynamicBytes.prototype.isType = function (name) {
return !!name.match(/^bytes(\[([0-9]*)\])*$/);
SolidityTypeDynamicBytes.prototype.staticPartLength = function (name) {
SolidityTypeDynamicBytes.prototype.isDynamicType = function () {
return true;
module.exports = SolidityTypeDynamicBytes;
},{"./formatters":9,"./type":14}],9:[function(require,module,exports){
* @file formatters.js
var BigNumber = require('bignumber.js');
var utils = require('../utils/utils');
var c = require('../utils/config');
var SolidityParam = require('./param');
* Formats input value to byte representation of int
* If value is negative, return it's two's complement
* If the value is floating point, round it down
* @method formatInputInt
* @param {String|Number|BigNumber} value that needs to be formatted
* @returns {SolidityParam}
var formatInputInt = function (value) {
BigNumber.config(c.ETH_BIGNUMBER_ROUNDING_MODE);
var result = utils.padLeft(utils.toTwosComplement(value).round().toString(16), 64);
return new SolidityParam(result);
* Formats input bytes
* @method formatInputBytes
* @param {String}
var formatInputBytes = function (value) {
var result = utils.toHex(value).substr(2);
var l = Math.floor((result.length + 63) / 64);
result = utils.padRight(result, l * 64);
* @method formatDynamicInputBytes
var formatInputDynamicBytes = function (value) {
var length = result.length / 2;
return new SolidityParam(formatInputInt(length).value + result);
* Formats input value to byte representation of string
* @method formatInputString
var formatInputString = function (value) {
var result = utils.fromUtf8(value).substr(2);
* Formats input value to byte representation of bool
* @method formatInputBool
* @param {Boolean}
var formatInputBool = function (value) {
var result = '000000000000000000000000000000000000000000000000000000000000000' + (value ? '1' : '0');
* Formats input value to byte representation of real
* Values are multiplied by 2^m and encoded as integers
* @method formatInputReal
* @param {String|Number|BigNumber}
var formatInputReal = function (value) {
return formatInputInt(new BigNumber(value).times(new BigNumber(2).pow(128)));
* Check if input value is negative
* @method signedIsNegative
* @param {String} value is hex format
* @returns {Boolean} true if it is negative, otherwise false
var signedIsNegative = function (value) {
return (new BigNumber(value.substr(0, 1), 16).toString(2).substr(0, 1)) === '1';
* Formats right-aligned output bytes to int
* @method formatOutputInt
* @param {SolidityParam} param
* @returns {BigNumber} right-aligned output bytes formatted to big number
var formatOutputInt = function (param) {
var value = param.staticPart() || "0";
// check if it's negative number
// it it is, return two's complement
if (signedIsNegative(value)) {
return new BigNumber(value, 16).minus(new BigNumber('ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff', 16)).minus(1);
return new BigNumber(value, 16);
* Formats right-aligned output bytes to uint
* @method formatOutputUInt
* @param {SolidityParam}
* @returns {BigNumeber} right-aligned output bytes formatted to uint
var formatOutputUInt = function (param) {
* Formats right-aligned output bytes to real
* @method formatOutputReal
* @returns {BigNumber} input bytes formatted to real
var formatOutputReal = function (param) {
return formatOutputInt(param).dividedBy(new BigNumber(2).pow(128));
* Formats right-aligned output bytes to ureal
* @method formatOutputUReal
* @returns {BigNumber} input bytes formatted to ureal
var formatOutputUReal = function (param) {
return formatOutputUInt(param).dividedBy(new BigNumber(2).pow(128));
* Should be used to format output bool
* @method formatOutputBool
* @returns {Boolean} right-aligned input bytes formatted to bool
var formatOutputBool = function (param) {
return param.staticPart() === '0000000000000000000000000000000000000000000000000000000000000001' ? true : false;
* Should be used to format output bytes
* @method formatOutputBytes
* @param {SolidityParam} left-aligned hex representation of string
* @returns {String} hex string
var formatOutputBytes = function (param) {
return '0x' + param.staticPart();
* @method formatOutputDynamicBytes
var formatOutputDynamicBytes = function (param) {
var length = (new BigNumber(param.dynamicPart().slice(0, 64), 16)).toNumber() * 2;
return '0x' + param.dynamicPart().substr(64, length);
* Should be used to format output string
* @method formatOutputString
* @returns {String} ascii string
var formatOutputString = function (param) {
return utils.toUtf8(param.dynamicPart().substr(64, length));
* Should be used to format output address
* @method formatOutputAddress
* @param {SolidityParam} right-aligned input bytes
* @returns {String} address
var formatOutputAddress = function (param) {
var value = param.staticPart();
return "0x" + value.slice(value.length - 40, value.length);
module.exports = {
formatInputInt: formatInputInt,
formatInputBytes: formatInputBytes,
formatInputDynamicBytes: formatInputDynamicBytes,
formatInputString: formatInputString,
formatInputBool: formatInputBool,
formatInputReal: formatInputReal,
formatOutputInt: formatOutputInt,
formatOutputUInt: formatOutputUInt,
formatOutputReal: formatOutputReal,
formatOutputUReal: formatOutputUReal,
formatOutputBool: formatOutputBool,
formatOutputBytes: formatOutputBytes,
formatOutputDynamicBytes: formatOutputDynamicBytes,
formatOutputString: formatOutputString,
formatOutputAddress: formatOutputAddress
},{"../utils/config":18,"../utils/utils":20,"./param":11,"bignumber.js":"bignumber.js"}],10:[function(require,module,exports){
* SolidityTypeInt is a prootype that represents int type
* int
* int[]
* int[4]
* int[][]
* int[3][]
* int[][6][], ...
* int32
* int64[]
* int8[4]
* int256[][]
* int64[][6][], ...
var SolidityTypeInt = function () {
this._outputFormatter = f.formatOutputInt;
SolidityTypeInt.prototype = new SolidityType({});
SolidityTypeInt.prototype.constructor = SolidityTypeInt;
SolidityTypeInt.prototype.isType = function (name) {
return !!name.match(/^int([0-9]*)?(\[([0-9]*)\])*$/);
SolidityTypeInt.prototype.staticPartLength = function (name) {
module.exports = SolidityTypeInt;
},{"./formatters":9,"./type":14}],11:[function(require,module,exports){
* @file param.js
* SolidityParam object prototype.
* Should be used when encoding, decoding solidity bytes
var SolidityParam = function (value, offset) {
this.value = value || '';
this.offset = offset; // offset in bytes
* This method should be used to get length of params's dynamic part
* @method dynamicPartLength
* @returns {Number} length of dynamic part (in bytes)
SolidityParam.prototype.dynamicPartLength = function () {
return this.dynamicPart().length / 2;
* This method should be used to create copy of solidity param with different offset
* @method withOffset
* @param {Number} offset length in bytes
* @returns {SolidityParam} new solidity param with applied offset
SolidityParam.prototype.withOffset = function (offset) {
return new SolidityParam(this.value, offset);
* This method should be used to combine solidity params together
* eg. when appending an array
* @method combine
* @param {SolidityParam} param with which we should combine
* @param {SolidityParam} result of combination
SolidityParam.prototype.combine = function (param) {
return new SolidityParam(this.value + param.value);
* This method should be called to check if param has dynamic size.
* If it has, it returns true, otherwise false
* @method isDynamic
* @returns {Boolean}
SolidityParam.prototype.isDynamic = function () {
return this.offset !== undefined;
* This method should be called to transform offset to bytes
* @method offsetAsBytes
* @returns {String} bytes representation of offset
SolidityParam.prototype.offsetAsBytes = function () {
return !this.isDynamic() ? '' : utils.padLeft(utils.toTwosComplement(this.offset).toString(16), 64);
* This method should be called to get static part of param
* @method staticPart
* @returns {String} offset if it is a dynamic param, otherwise value
SolidityParam.prototype.staticPart = function () {
if (!this.isDynamic()) {
return this.value;
return this.offsetAsBytes();
* This method should be called to get dynamic part of param
* @method dynamicPart
* @returns {String} returns a value if it is a dynamic param, otherwise empty string
SolidityParam.prototype.dynamicPart = function () {
return this.isDynamic() ? this.value : '';
* This method should be called to encode param
* @method encode
* @returns {String}
SolidityParam.prototype.encode = function () {
return this.staticPart() + this.dynamicPart();
* This method should be called to encode array of params
* @method encodeList
* @param {Array[SolidityParam]} params
SolidityParam.encodeList = function (params) {
// updating offsets
var totalOffset = params.length * 32;
var offsetParams = params.map(function (param) {
if (!param.isDynamic()) {
return param;
var offset = totalOffset;
totalOffset += param.dynamicPartLength();
return param.withOffset(offset);
// encode everything!
return offsetParams.reduce(function (result, param) {
return result + param.dynamicPart();
}, offsetParams.reduce(function (result, param) {
return result + param.staticPart();
}, ''));
module.exports = SolidityParam;
},{"../utils/utils":20}],12:[function(require,module,exports){
* SolidityTypeReal is a prootype that represents real type
* real
* real[]
* real[4]
* real[][]
* real[3][]
* real[][6][], ...
* real32
* real64[]
* real8[4]
* real256[][]
* real64[][6][], ...
var SolidityTypeReal = function () {
this._inputFormatter = f.formatInputReal;
this._outputFormatter = f.formatOutputReal;
SolidityTypeReal.prototype = new SolidityType({});
SolidityTypeReal.prototype.constructor = SolidityTypeReal;
SolidityTypeReal.prototype.isType = function (name) {
return !!name.match(/real([0-9]*)?(\[([0-9]*)\])?/);
SolidityTypeReal.prototype.staticPartLength = function (name) {
module.exports = SolidityTypeReal;
},{"./formatters":9,"./type":14}],13:[function(require,module,exports){
var SolidityTypeString = function () {
this._inputFormatter = f.formatInputString;
this._outputFormatter = f.formatOutputString;
SolidityTypeString.prototype = new SolidityType({});
SolidityTypeString.prototype.constructor = SolidityTypeString;
SolidityTypeString.prototype.isType = function (name) {
return !!name.match(/^string(\[([0-9]*)\])*$/);
SolidityTypeString.prototype.staticPartLength = function (name) {
SolidityTypeString.prototype.isDynamicType = function () {
module.exports = SolidityTypeString;
},{"./formatters":9,"./type":14}],14:[function(require,module,exports){
* SolidityType prototype is used to encode/decode solidity params of certain type
var SolidityType = function (config) {
this._inputFormatter = config.inputFormatter;
this._outputFormatter = config.outputFormatter;
* Should be used to determine if this SolidityType do match given name
* @method isType
* @param {String} name
* @return {Bool} true if type match this SolidityType, otherwise false
SolidityType.prototype.isType = function (name) {
throw "this method should be overrwritten for type " + name;
* Should be used to determine what is the length of static part in given type
* @method staticPartLength
* @return {Number} length of static part in bytes
SolidityType.prototype.staticPartLength = function (name) {
throw "this method should be overrwritten for type: " + name;
* Should be used to determine if type is dynamic array
* eg:
* "type[]" => true
* "type[4]" => false
* @method isDynamicArray
* @return {Bool} true if the type is dynamic array
SolidityType.prototype.isDynamicArray = function (name) {
var nestedTypes = this.nestedTypes(name);
return !!nestedTypes && !nestedTypes[nestedTypes.length - 1].match(/[0-9]{1,}/g);
* Should be used to determine if type is static array
* "type[]" => false
* "type[4]" => true
* @method isStaticArray
* @return {Bool} true if the type is static array
SolidityType.prototype.isStaticArray = function (name) {
return !!nestedTypes && !!nestedTypes[nestedTypes.length - 1].match(/[0-9]{1,}/g);
* Should return length of static array
* eg.
* "int[32]" => 32
* "int256[14]" => 14
* "int[2][3]" => 3
* "int" => 1
* "int[1]" => 1
* "int[]" => 1
* @method staticArrayLength
* @return {Number} static array length
SolidityType.prototype.staticArrayLength = function (name) {
if (nestedTypes) {
return parseInt(nestedTypes[nestedTypes.length - 1].match(/[0-9]{1,}/g) || 1);
return 1;
* Should return nested type
* "int[32]" => "int"
* "int256[14]" => "int256"
* "int[2][3]" => "int[2]"
* "int" => "int"
* "int[]" => "int"
* @method nestedName
* @return {String} nested name
SolidityType.prototype.nestedName = function (name) {
// remove last [] in name
if (!nestedTypes) {
return name;
return name.substr(0, name.length - nestedTypes[nestedTypes.length - 1].length);
* Should return true if type has dynamic size by default
* such types are "string", "bytes"
* @method isDynamicType
* @return {Bool} true if is dynamic, otherwise false
SolidityType.prototype.isDynamicType = function () {
return false;
* Should return array of nested types
* "int[2][3][]" => ["[2]", "[3]", "[]"]
* "int[] => ["[]"]
* "int" => null
* @method nestedTypes
* @return {Array} array of nested types
SolidityType.prototype.nestedTypes = function (name) {
// return list of strings eg. "[]", "[3]", "[]", "[2]"
return name.match(/(\[[0-9]*\])/g);
* Should be used to encode the value
* @param {Object} value
* @return {String} encoded value
SolidityType.prototype.encode = function (value, name) {
if (this.isDynamicArray(name)) {
var length = value.length; // in int
var nestedName = self.nestedName(name);
var result = [];
result.push(f.formatInputInt(length).encode());
value.forEach(function (v) {
result.push(self.encode(v, nestedName));
} else if (this.isStaticArray(name)) {
var length = self.staticArrayLength(name); // in int
for (var i = 0; i < length; i++) {
result.push(self.encode(value[i], nestedName));
return this._inputFormatter(value, name).encode();
* Should be used to decode value from bytes
* @method decode
* @param {Number} offset in bytes
* @param {String} name type name
* @returns {Object} decoded value
SolidityType.prototype.decode = function (bytes, offset, name) {
var arrayOffset = parseInt('0x' + bytes.substr(offset * 2, 64)); // in bytes
var length = parseInt('0x' + bytes.substr(arrayOffset * 2, 64)); // in int
var arrayStart = arrayOffset + 32; // array starts after length; // in bytes
var nestedStaticPartLength = self.staticPartLength(nestedName); // in bytes
var roundedNestedStaticPartLength = Math.floor((nestedStaticPartLength + 31) / 32) * 32;
for (var i = 0; i < length * roundedNestedStaticPartLength; i += roundedNestedStaticPartLength) {
result.push(self.decode(bytes, arrayStart + i, nestedName));
var arrayStart = offset; // in bytes
} else if (this.isDynamicType(name)) {
var dynamicOffset = parseInt('0x' + bytes.substr(offset * 2, 64)); // in bytes
var length = parseInt('0x' + bytes.substr(dynamicOffset * 2, 64)); // in bytes
var roundedLength = Math.floor((length + 31) / 32); // in int
return self._outputFormatter(new SolidityParam(bytes.substr(dynamicOffset * 2, ( 1 + roundedLength) * 64), 0));
var length = this.staticPartLength(name);
return this._outputFormatter(new SolidityParam(bytes.substr(offset * 2, length * 2)));
module.exports = SolidityType;
},{"./formatters":9,"./param":11}],15:[function(require,module,exports){
* SolidityTypeUInt is a prootype that represents uint type
* uint
* uint[]
* uint[4]
* uint[][]
* uint[3][]
* uint[][6][], ...
* uint32
* uint64[]
* uint8[4]
* uint256[][]
* uint64[][6][], ...
var SolidityTypeUInt = function () {
this._outputFormatter = f.formatOutputUInt;
SolidityTypeUInt.prototype = new SolidityType({});
SolidityTypeUInt.prototype.constructor = SolidityTypeUInt;
SolidityTypeUInt.prototype.isType = function (name) {
return !!name.match(/^uint([0-9]*)?(\[([0-9]*)\])*$/);
SolidityTypeUInt.prototype.staticPartLength = function (name) {
module.exports = SolidityTypeUInt;
},{"./formatters":9,"./type":14}],16:[function(require,module,exports){
* SolidityTypeUReal is a prootype that represents ureal type
* ureal
* ureal[]
* ureal[4]
* ureal[][]
* ureal[3][]
* ureal[][6][], ...
* ureal32
* ureal64[]
* ureal8[4]
* ureal256[][]
* ureal64[][6][], ...
var SolidityTypeUReal = function () {
this._outputFormatter = f.formatOutputUReal;
SolidityTypeUReal.prototype = new SolidityType({});
SolidityTypeUReal.prototype.constructor = SolidityTypeUReal;
SolidityTypeUReal.prototype.isType = function (name) {
return !!name.match(/^ureal([0-9]*)?(\[([0-9]*)\])*$/);
SolidityTypeUReal.prototype.staticPartLength = function (name) {
module.exports = SolidityTypeUReal;
},{"./formatters":9,"./type":14}],17:[function(require,module,exports){
'use strict';
// go env doesn't have and need XMLHttpRequest
if (typeof XMLHttpRequest === 'undefined') {
exports.XMLHttpRequest = {};
exports.XMLHttpRequest = XMLHttpRequest; // jshint ignore:line
},{}],18:[function(require,module,exports){
/** @file config.js
* @authors:
* Marek Kotewicz <marek@ethdev.com>
* Utils
* @module utils
* Utility functions
* @class [utils] config
* @constructor
/// required to define ETH_BIGNUMBER_ROUNDING_MODE
var ETH_UNITS = [
'wei',
'kwei',
'Mwei',
'Gwei',
'szabo',
'finney',
'femtoether',
'picoether',
'nanoether',
'microether',
'milliether',
'nano',
'micro',
'milli',
'ether',
'grand',
'Mether',
'Gether',
'Tether',
'Pether',
'Eether',
'Zether',
'Yether',
'Nether',
'Dether',
'Vether',
'Uether'
];
ETH_PADDING: 32,
ETH_SIGNATURE_LENGTH: 4,
ETH_UNITS: ETH_UNITS,
ETH_BIGNUMBER_ROUNDING_MODE: { ROUNDING_MODE: BigNumber.ROUND_DOWN },
ETH_POLLING_TIMEOUT: 1000/2,
defaultBlock: 'latest',
defaultAccount: undefined
},{"bignumber.js":"bignumber.js"}],19:[function(require,module,exports){
* @file sha3.js
var CryptoJS = require('crypto-js');
var sha3 = require('crypto-js/sha3');
module.exports = function (value, options) {
if (options && options.encoding === 'hex') {
if (value.length > 2 && value.substr(0, 2) === '0x') {
value = value.substr(2);
value = CryptoJS.enc.Hex.parse(value);
return sha3(value, {
outputLength: 256
}).toString();
},{"crypto-js":58,"crypto-js/sha3":79}],20:[function(require,module,exports){
* @file utils.js
* @class [utils] utils
var sha3 = require('./sha3.js');
var utf8 = require('utf8');
var unitMap = {
'noether': '0',
'wei': '1',
'kwei': '1000',
'Kwei': '1000',
'babbage': '1000',
'femtoether': '1000',
'mwei': '1000000',
'Mwei': '1000000',
'lovelace': '1000000',
'picoether': '1000000',
'gwei': '1000000000',
'Gwei': '1000000000',
'shannon': '1000000000',
'nanoether': '1000000000',
'nano': '1000000000',
'szabo': '1000000000000',
'microether': '1000000000000',
'micro': '1000000000000',
'finney': '1000000000000000',
'milliether': '1000000000000000',
'milli': '1000000000000000',
'ether': '1000000000000000000',
'kether': '1000000000000000000000',
'grand': '1000000000000000000000',
'mether': '1000000000000000000000000',
'gether': '1000000000000000000000000000',
'tether': '1000000000000000000000000000000'
* Should be called to pad string to expected length
* @method padLeft
* @param {String} string to be padded
* @param {Number} characters that result string should have
* @param {String} sign, by default 0
* @returns {String} right aligned string
var padLeft = function (string, chars, sign) {
return new Array(chars - string.length + 1).join(sign ? sign : "0") + string;
* @method padRight
var padRight = function (string, chars, sign) {
return string + (new Array(chars - string.length + 1).join(sign ? sign : "0"));
* Should be called to get utf8 from its hex representation
* @method toUtf8
* @param {String} string in hex
* @returns {String} ascii string representation of hex value
var toUtf8 = function(hex) {
// Find termination
var str = "";
var i = 0, l = hex.length;
if (hex.substring(0, 2) === '0x') {
i = 2;
for (; i < l; i+=2) {
var code = parseInt(hex.substr(i, 2), 16);
if (code === 0)
break;
str += String.fromCharCode(code);
return utf8.decode(str);
* Should be called to get ascii from its hex representation
* @method toAscii
var toAscii = function(hex) {
return str;
* Should be called to get hex representation (prefixed by 0x) of utf8 string
* @method fromUtf8
* @param {String} string
* @param {Number} optional padding
* @returns {String} hex representation of input string
var fromUtf8 = function(str) {
str = utf8.encode(str);
var hex = "";
for(var i = 0; i < str.length; i++) {
var code = str.charCodeAt(i);
var n = code.toString(16);
hex += n.length < 2 ? '0' + n : n;
return "0x" + hex;
* Should be called to get hex representation (prefixed by 0x) of ascii string
* @method fromAscii
var fromAscii = function(str) {
* Should be used to create full function/event name from json abi
* @method transformToFullName
* @param {Object} json-abi
* @return {String} full fnction/event name
var transformToFullName = function (json) {
if (json.name.indexOf('(') !== -1) {
return json.name;
var typeName = json.inputs.map(function(i){return i.type; }).join();
return json.name + '(' + typeName + ')';
* Should be called to get display name of contract function
* @method extractDisplayName
* @param {String} name of function/event
* @returns {String} display name for function/event eg. multiply(uint256) -> multiply
var extractDisplayName = function (name) {
var length = name.indexOf('(');
return length !== -1 ? name.substr(0, length) : name;
/// @returns overloaded part of function/event name
var extractTypeName = function (name) {
/// TODO: make it invulnerable
return length !== -1 ? name.substr(length + 1, name.length - 1 - (length + 1)).replace(' ', '') : "";
* Converts value to its decimal representation in string
* @method toDecimal
* @return {String}
var toDecimal = function (value) {
return toBigNumber(value).toNumber();
* Converts value to its hex representation
* @method fromDecimal
var fromDecimal = function (value) {
var number = toBigNumber(value);
var result = number.toString(16);
return number.lessThan(0) ? '-0x' + result.substr(1) : '0x' + result;
* Auto converts any given value into its hex representation.
* And even stringifys objects before.
* @method toHex
* @param {String|Number|BigNumber|Object}
var toHex = function (val) {
/*jshint maxcomplexity: 8 */
if (isBoolean(val))
return fromDecimal(+val);
if (isBigNumber(val))
return fromDecimal(val);
if (isObject(val))
return fromUtf8(JSON.stringify(val));
// if its a negative number, pass it through fromDecimal
if (isString(val)) {
if (val.indexOf('-0x') === 0)
else if(val.indexOf('0x') === 0)
return val;
else if (!isFinite(val))
return fromAscii(val);
* Returns value of unit in Wei
* @method getValueOfUnit
* @param {String} unit the unit to convert to, default ether
* @returns {BigNumber} value of the unit (in Wei)
* @throws error if the unit is not correct:w
var getValueOfUnit = function (unit) {
unit = unit ? unit.toLowerCase() : 'ether';
var unitValue = unitMap[unit];
if (unitValue === undefined) {
throw new Error('This unit doesn\'t exists, please use the one of the following units' + JSON.stringify(unitMap, null, 2));
return new BigNumber(unitValue, 10);
* Takes a number of wei and converts it to any other ether unit.
* Possible units are:
* SI Short SI Full Effigy Other
* - kwei femtoether babbage
* - mwei picoether lovelace
* - gwei nanoether shannon nano
* - -- microether szabo micro
* - -- milliether finney milli
* - ether -- --
* - kether -- grand
* - mether
* - gether
* - tether
* @method fromWei
* @param {Number|String} number can be a number, number string or a HEX of a decimal
* @return {String|Object} When given a BigNumber object it returns one as well, otherwise a number
var fromWei = function(number, unit) {
var returnValue = toBigNumber(number).dividedBy(getValueOfUnit(unit));
return isBigNumber(number) ? returnValue : returnValue.toString(10);
* Takes a number of a unit and converts it to wei.
* @method toWei
* @param {Number|String|BigNumber} number can be a number, number string or a HEX of a decimal
* @param {String} unit the unit to convert from, default ether
var toWei = function(number, unit) {
var returnValue = toBigNumber(number).times(getValueOfUnit(unit));
* Takes an input and transforms it into an bignumber
* @method toBigNumber
* @param {Number|String|BigNumber} a number, string, HEX string or BigNumber
* @return {BigNumber} BigNumber
var toBigNumber = function(number) {
/*jshint maxcomplexity:5 */
number = number || 0;
if (isBigNumber(number))
return number;
if (isString(number) && (number.indexOf('0x') === 0 || number.indexOf('-0x') === 0)) {
return new BigNumber(number.replace('0x',''), 16);
return new BigNumber(number.toString(10), 10);
* Takes and input transforms it into bignumber and if it is negative value, into two's complement
* @method toTwosComplement
* @param {Number|String|BigNumber}
* @return {BigNumber}
var toTwosComplement = function (number) {
var bigNumber = toBigNumber(number);
if (bigNumber.lessThan(0)) {
return new BigNumber("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff", 16).plus(bigNumber).plus(1);
return bigNumber;
* Checks if the given string is strictly an address
* @method isStrictAddress
* @param {String} address the given HEX adress
* @return {Boolean}
var isStrictAddress = function (address) {
return /^0x[0-9a-f]{40}$/i.test(address);
* Checks if the given string is an address
* @method isAddress
var isAddress = function (address) {
if (!/^(0x)?[0-9a-f]{40}$/i.test(address)) {
// check if it has the basic requirements of an address
} else if (/^(0x)?[0-9a-f]{40}$/.test(address) || /^(0x)?[0-9A-F]{40}$/.test(address)) {
// If it's all small caps or all all caps, return true
// Otherwise check each case
return isChecksumAddress(address);
* Checks if the given string is a checksummed address
* @method isChecksumAddress
var isChecksumAddress = function (address) {
// Check each case
address = address.replace('0x','');
var addressHash = sha3(address.toLowerCase());
for (var i = 0; i < 40; i++ ) {
// the nth letter should be uppercase if the nth digit of casemap is 1
if ((parseInt(addressHash[i], 16) > 7 && address[i].toUpperCase() !== address[i]) || (parseInt(addressHash[i], 16) <= 7 && address[i].toLowerCase() !== address[i])) {
* Makes a checksum address
* @method toChecksumAddress
var toChecksumAddress = function (address) {
if (typeof address === 'undefined') return '';
address = address.toLowerCase().replace('0x','');
var addressHash = sha3(address);
var checksumAddress = '0x';
for (var i = 0; i < address.length; i++ ) {
// If ith character is 9 to f then make it uppercase
if (parseInt(addressHash[i], 16) > 7) {
checksumAddress += address[i].toUpperCase();
checksumAddress += address[i];
return checksumAddress;
* Transforms given string to valid 20 bytes-length addres with 0x prefix
* @method toAddress
* @param {String} address
* @return {String} formatted address
var toAddress = function (address) {
if (isStrictAddress(address)) {
return address;
if (/^[0-9a-f]{40}$/.test(address)) {
return '0x' + address;
return '0x' + padLeft(toHex(address).substr(2), 40);
* Returns true if object is BigNumber, otherwise false
* @method isBigNumber
* @param {Object}
var isBigNumber = function (object) {
return object instanceof BigNumber ||
(object && object.constructor && object.constructor.name === 'BigNumber');
* Returns true if object is string, otherwise false
* @method isString
var isString = function (object) {
return typeof object === 'string' ||
(object && object.constructor && object.constructor.name === 'String');
* Returns true if object is function, otherwise false
* @method isFunction
var isFunction = function (object) {
return typeof object === 'function';
* Returns true if object is Objet, otherwise false
* @method isObject
var isObject = function (object) {
return typeof object === 'object';
* Returns true if object is boolean, otherwise false
* @method isBoolean
var isBoolean = function (object) {
return typeof object === 'boolean';
* Returns true if object is array, otherwise false
* @method isArray
var isArray = function (object) {
return object instanceof Array;
* Returns true if given string is valid json object
* @method isJson
var isJson = function (str) {
try {
return !!JSON.parse(str);
} catch (e) {
padLeft: padLeft,
padRight: padRight,
toHex: toHex,
toDecimal: toDecimal,
fromDecimal: fromDecimal,
toUtf8: toUtf8,
toAscii: toAscii,
fromUtf8: fromUtf8,
fromAscii: fromAscii,
transformToFullName: transformToFullName,
extractDisplayName: extractDisplayName,
extractTypeName: extractTypeName,
toWei: toWei,
fromWei: fromWei,
toBigNumber: toBigNumber,
toTwosComplement: toTwosComplement,
toAddress: toAddress,
isBigNumber: isBigNumber,
isStrictAddress: isStrictAddress,
isAddress: isAddress,
isChecksumAddress: isChecksumAddress,
toChecksumAddress: toChecksumAddress,
isFunction: isFunction,
isString: isString,
isObject: isObject,
isBoolean: isBoolean,
isArray: isArray,
isJson: isJson
},{"./sha3.js":19,"bignumber.js":"bignumber.js","utf8":84}],21:[function(require,module,exports){
module.exports={
"version": "0.15.3"
},{}],22:[function(require,module,exports){
* @file web3.js
* Jeffrey Wilcke <jeff@ethdev.com>
* Marian Oancea <marian@ethdev.com>
* Fabian Vogelsteller <fabian@ethdev.com>
* Gav Wood <g@ethdev.com>
* @date 2014
var RequestManager = require('./web3/requestmanager');
var Iban = require('./web3/iban');
var Eth = require('./web3/methods/eth');
var DB = require('./web3/methods/db');
var Shh = require('./web3/methods/shh');
var Net = require('./web3/methods/net');
var Personal = require('./web3/methods/personal');
var Settings = require('./web3/settings');
var version = require('./version.json');
var utils = require('./utils/utils');
var sha3 = require('./utils/sha3');
var extend = require('./web3/extend');
var Batch = require('./web3/batch');
var Property = require('./web3/property');
var HttpProvider = require('./web3/httpprovider');
var IpcProvider = require('./web3/ipcprovider');
function Web3 (provider) {
this._requestManager = new RequestManager(provider);
this.currentProvider = provider;
this.eth = new Eth(this);
this.db = new DB(this);
this.shh = new Shh(this);
this.net = new Net(this);
this.personal = new Personal(this);
this.settings = new Settings();
this.version = {
api: version.version
this.providers = {
HttpProvider: HttpProvider,
IpcProvider: IpcProvider
this._extend = extend(this);
this._extend({
properties: properties()
// expose providers on the class
Web3.providers = {
Web3.prototype.setProvider = function (provider) {
this._requestManager.setProvider(provider);
Web3.prototype.reset = function (keepIsSyncing) {
this._requestManager.reset(keepIsSyncing);
Web3.prototype.toHex = utils.toHex;
Web3.prototype.toAscii = utils.toAscii;
Web3.prototype.toUtf8 = utils.toUtf8;
Web3.prototype.fromAscii = utils.fromAscii;
Web3.prototype.fromUtf8 = utils.fromUtf8;
Web3.prototype.toDecimal = utils.toDecimal;
Web3.prototype.fromDecimal = utils.fromDecimal;
Web3.prototype.toBigNumber = utils.toBigNumber;
Web3.prototype.toWei = utils.toWei;
Web3.prototype.fromWei = utils.fromWei;
Web3.prototype.isAddress = utils.isAddress;
Web3.prototype.isChecksumAddress = utils.isChecksumAddress;
Web3.prototype.toChecksumAddress = utils.toChecksumAddress;
Web3.prototype.isIBAN = utils.isIBAN;
Web3.prototype.sha3 = function(string, options) {
return '0x' + sha3(string, options);
* Transforms direct icap to address
Web3.prototype.fromICAP = function (icap) {
var iban = new Iban(icap);
return iban.address();
var properties = function () {
return [
new Property({
name: 'version.node',
getter: 'web3_clientVersion'
}),
name: 'version.network',
getter: 'net_version',
inputFormatter: utils.toDecimal
name: 'version.ethereum',
getter: 'eth_protocolVersion',
name: 'version.whisper',
getter: 'shh_version',
})
Web3.prototype.isConnected = function(){
return (this.currentProvider && this.currentProvider.isConnected());
Web3.prototype.createBatch = function () {
return new Batch(this);
module.exports = Web3;
},{"./utils/sha3":19,"./utils/utils":20,"./version.json":21,"./web3/batch":24,"./web3/extend":28,"./web3/httpprovider":32,"./web3/iban":33,"./web3/ipcprovider":34,"./web3/methods/db":37,"./web3/methods/eth":38,"./web3/methods/net":39,"./web3/methods/personal":40,"./web3/methods/shh":41,"./web3/property":44,"./web3/requestmanager":45,"./web3/settings":46}],23:[function(require,module,exports){
* @file allevents.js
var sha3 = require('../utils/sha3');
var SolidityEvent = require('./event');
var formatters = require('./formatters');
var Filter = require('./filter');
var watches = require('./methods/watches');
var AllSolidityEvents = function (requestManager, json, address) {
this._requestManager = requestManager;
this._json = json;
this._address = address;
AllSolidityEvents.prototype.encode = function (options) {
options = options || {};
var result = {};
['fromBlock', 'toBlock'].filter(function (f) {
return options[f] !== undefined;
}).forEach(function (f) {
result[f] = formatters.inputBlockNumberFormatter(options[f]);
result.address = this._address;
AllSolidityEvents.prototype.decode = function (data) {
data.data = data.data || '';
data.topics = data.topics || [];
var eventTopic = data.topics[0].slice(2);
var match = this._json.filter(function (j) {
return eventTopic === sha3(utils.transformToFullName(j));
if (!match) { // cannot find matching event?
console.warn('cannot find event for log');
return data;
var event = new SolidityEvent(this._requestManager, match, this._address);
return event.decode(data);
AllSolidityEvents.prototype.execute = function (options, callback) {
if (utils.isFunction(arguments[arguments.length - 1])) {
callback = arguments[arguments.length - 1];
if(arguments.length === 1)
options = null;
var o = this.encode(options);
var formatter = this.decode.bind(this);
return new Filter(this._requestManager, o, watches.eth(), formatter, callback);
AllSolidityEvents.prototype.attachToContract = function (contract) {
var execute = this.execute.bind(this);
contract.allEvents = execute;
module.exports = AllSolidityEvents;
},{"../utils/sha3":19,"../utils/utils":20,"./event":27,"./filter":29,"./formatters":30,"./methods/watches":42}],24:[function(require,module,exports){
* @file batch.js
var Jsonrpc = require('./jsonrpc');
var errors = require('./errors');
var Batch = function (web3) {
this.requestManager = web3._requestManager;
this.requests = [];
* Should be called to add create new request to batch request
* @method add
* @param {Object} jsonrpc requet object
Batch.prototype.add = function (request) {
this.requests.push(request);
* Should be called to execute batch request
* @method execute
Batch.prototype.execute = function () {
var requests = this.requests;
this.requestManager.sendBatch(requests, function (err, results) {
results = results || [];
requests.map(function (request, index) {
return results[index] || {};
}).forEach(function (result, index) {
if (requests[index].callback) {
if (!Jsonrpc.getInstance().isValidResponse(result)) {
return requests[index].callback(errors.InvalidResponse(result));
requests[index].callback(null, (requests[index].format ? requests[index].format(result.result) : result.result));
module.exports = Batch;
},{"./errors":26,"./jsonrpc":35}],25:[function(require,module,exports){
* @file contract.js
var coder = require('../solidity/coder');
var SolidityFunction = require('./function');
var AllEvents = require('./allevents');
* Should be called to encode constructor params
* @method encodeConstructorParams
* @param {Array} abi
* @param {Array} constructor params
var encodeConstructorParams = function (abi, params) {
return abi.filter(function (json) {
return json.type === 'constructor' && json.inputs.length === params.length;
}).map(function (json) {
return json.inputs.map(function (input) {
return input.type;
}).map(function (types) {
return coder.encodeParams(types, params);
})[0] || '';
* Should be called to add functions to contract object
* @method addFunctionsToContract
* @param {Contract} contract
var addFunctionsToContract = function (contract) {
contract.abi.filter(function (json) {
return json.type === 'function';
return new SolidityFunction(contract._eth, json, contract.address);
f.attachToContract(contract);
* Should be called to add events to contract object
* @method addEventsToContract
var addEventsToContract = function (contract) {
var events = contract.abi.filter(function (json) {
return json.type === 'event';
var All = new AllEvents(contract._eth._requestManager, events, contract.address);
All.attachToContract(contract);
events.map(function (json) {
return new SolidityEvent(contract._eth._requestManager, json, contract.address);
}).forEach(function (e) {
e.attachToContract(contract);
* Should be called to check if the contract gets properly deployed on the blockchain.
* @method checkForContractAddress
* @param {Object} contract
* @param {Function} callback
* @returns {Undefined}
var checkForContractAddress = function(contract, callback){
var count = 0,
callbackFired = false;
// wait for receipt
var filter = contract._eth.filter('latest', function(e){
if (!e && !callbackFired) {
count++;
// stop watching after 50 blocks (timeout)
if (count > 50) {
filter.stopWatching();
callbackFired = true;
if (callback)
callback(new Error('Contract transaction couldn\'t be found after 50 blocks'));
else
throw new Error('Contract transaction couldn\'t be found after 50 blocks');
contract._eth.getTransactionReceipt(contract.transactionHash, function(e, receipt){
if(receipt && !callbackFired) {
contract._eth.getCode(receipt.contractAddress, function(e, code){
/*jshint maxcomplexity: 6 */
if(callbackFired || !code)
return;
if(code.length > 2) {
// console.log('Contract code deployed!');
contract.address = receipt.contractAddress;
// attach events and methods again after we have
addFunctionsToContract(contract);
addEventsToContract(contract);
// call callback for the second time
if(callback)
callback(null, contract);
callback(new Error('The contract code couldn\'t be stored, please check your gas amount.'));
throw new Error('The contract code couldn\'t be stored, please check your gas amount.');
* Should be called to create new ContractFactory instance
* @method ContractFactory
var ContractFactory = function (eth, abi) {
this.eth = eth;
this.abi = abi;
* Should be called to create new contract on a blockchain
* @method new
* @param {Any} contract constructor param1 (optional)
* @param {Any} contract constructor param2 (optional)
* @param {Object} contract transaction object (required)
* @returns {Contract} returns contract instance
this.new = function () {
var contract = new Contract(this.eth, this.abi);
// parse arguments
var options = {}; // required!
var callback;
var args = Array.prototype.slice.call(arguments);
if (utils.isFunction(args[args.length - 1])) {
callback = args.pop();
var last = args[args.length - 1];
if (utils.isObject(last) && !utils.isArray(last)) {
options = args.pop();
var bytes = encodeConstructorParams(this.abi, args);
options.data += bytes;
if (callback) {
// wait for the contract address adn check if the code was deployed
this.eth.sendTransaction(options, function (err, hash) {
if (err) {
callback(err);
// add the transaction hash
contract.transactionHash = hash;
// call callback for the first time
checkForContractAddress(contract, callback);
var hash = this.eth.sendTransaction(options);
checkForContractAddress(contract);
return contract;
this.new.getData = this.getData.bind(this);
* Should be called to create new ContractFactory
* @method contract
* @returns {ContractFactory} new contract factory
//var contract = function (abi) {
//return new ContractFactory(abi);
//};
* Should be called to get access to existing contract on a blockchain
* @method at
* @param {Address} contract address (required)
* @param {Function} callback {optional)
* @returns {Contract} returns contract if no callback was passed,
* otherwise calls callback function (err, contract)
ContractFactory.prototype.at = function (address, callback) {
var contract = new Contract(this.eth, this.abi, address);
// this functions are not part of prototype,
// because we dont want to spoil the interface
* Gets the data, which is data to deploy plus constructor params
* @method getData
ContractFactory.prototype.getData = function () {
return options.data;
* Should be called to create new contract instance
* @method Contract
* @param {Address} contract address
var Contract = function (eth, abi, address) {
this._eth = eth;
this.transactionHash = null;
this.address = address;
module.exports = ContractFactory;
},{"../solidity/coder":7,"../utils/utils":20,"./allevents":23,"./event":27,"./function":31}],26:[function(require,module,exports){
* @file errors.js
InvalidNumberOfParams: function () {
return new Error('Invalid number of input parameters');
InvalidConnection: function (host){
return new Error('CONNECTION ERROR: Couldn\'t connect to node '+ host +'.');
InvalidProvider: function () {
return new Error('Provider not set or invalid');
InvalidResponse: function (result){
var message = !!result && !!result.error && !!result.error.message ? result.error.message : 'Invalid JSON RPC response: ' + JSON.stringify(result);
return new Error(message);
},{}],27:[function(require,module,exports){
* @file event.js
* This prototype should be used to create event filters
var SolidityEvent = function (requestManager, json, address) {
this._params = json.inputs;
this._name = utils.transformToFullName(json);
this._anonymous = json.anonymous;
* Should be used to get filtered param types
* @method types
* @param {Bool} decide if returned typed should be indexed
* @return {Array} array of types
SolidityEvent.prototype.types = function (indexed) {
return this._params.filter(function (i) {
return i.indexed === indexed;
}).map(function (i) {
return i.type;
* Should be used to get event display name
* @method displayName
* @return {String} event display name
SolidityEvent.prototype.displayName = function () {
return utils.extractDisplayName(this._name);
* Should be used to get event type name
* @method typeName
* @return {String} event type name
SolidityEvent.prototype.typeName = function () {
return utils.extractTypeName(this._name);
* Should be used to get event signature
* @method signature
* @return {String} event signature
SolidityEvent.prototype.signature = function () {
return sha3(this._name);
* Should be used to encode indexed params and options to one final object
* @param {Object} indexed
* @param {Object} options
* @return {Object} everything combined together and encoded
SolidityEvent.prototype.encode = function (indexed, options) {
indexed = indexed || {};
result.topics = [];
if (!this._anonymous) {
result.topics.push('0x' + this.signature());
var indexedTopics = this._params.filter(function (i) {
return i.indexed === true;
var value = indexed[i.name];
if (value === undefined || value === null) {
return null;
if (utils.isArray(value)) {
return value.map(function (v) {
return '0x' + coder.encodeParam(i.type, v);
return '0x' + coder.encodeParam(i.type, value);
result.topics = result.topics.concat(indexedTopics);
* Should be used to decode indexed params and options
* @param {Object} data
* @return {Object} result object with decoded indexed && not indexed params
SolidityEvent.prototype.decode = function (data) {
var argTopics = this._anonymous ? data.topics : data.topics.slice(1);
var indexedData = argTopics.map(function (topics) { return topics.slice(2); }).join("");
var indexedParams = coder.decodeParams(this.types(true), indexedData);
var notIndexedData = data.data.slice(2);
var notIndexedParams = coder.decodeParams(this.types(false), notIndexedData);
var result = formatters.outputLogFormatter(data);
result.event = this.displayName();
result.address = data.address;
result.args = this._params.reduce(function (acc, current) {
acc[current.name] = current.indexed ? indexedParams.shift() : notIndexedParams.shift();
return acc;
}, {});
delete result.data;
delete result.topics;
* Should be used to create new filter object from event
* @return {Object} filter object
SolidityEvent.prototype.execute = function (indexed, options, callback) {
if(arguments.length === 2)
if(arguments.length === 1) {
indexed = {};
var o = this.encode(indexed, options);
* Should be used to attach event to contract object
* @method attachToContract
* @param {Contract}
SolidityEvent.prototype.attachToContract = function (contract) {
var displayName = this.displayName();
if (!contract[displayName]) {
contract[displayName] = execute;
contract[displayName][this.typeName()] = this.execute.bind(this, contract);
module.exports = SolidityEvent;
},{"../solidity/coder":7,"../utils/sha3":19,"../utils/utils":20,"./filter":29,"./formatters":30,"./methods/watches":42}],28:[function(require,module,exports){
var utils = require('./../utils/utils');
var Method = require('./method');
var Property = require('./property');
// TODO: refactor, so the input params are not altered.
// it's necessary to make same 'extension' work with multiple providers
var extend = function (web3) {
/* jshint maxcomplexity:5 */
var ex = function (extension) {
var extendedObject;
if (extension.property) {
if (!web3[extension.property]) {
web3[extension.property] = {};
extendedObject = web3[extension.property];
extendedObject = web3;
if (extension.methods) {
extension.methods.forEach(function (method) {
method.attachToObject(extendedObject);
method.setRequestManager(web3._requestManager);
if (extension.properties) {
extension.properties.forEach(function (property) {
property.attachToObject(extendedObject);
property.setRequestManager(web3._requestManager);
ex.formatters = formatters;
ex.utils = utils;
ex.Method = Method;
ex.Property = Property;
return ex;
module.exports = extend;
},{"./../utils/utils":20,"./formatters":30,"./method":36,"./property":44}],29:[function(require,module,exports){
/** @file filter.js
* Converts a given topic to a hex string, but also allows null values.
* @param {Mixed} value
var toTopic = function(value){
if(value === null || typeof value === 'undefined')
value = String(value);
if(value.indexOf('0x') === 0)
return value;
return utils.fromUtf8(value);
/// This method should be called on options object, to verify deprecated properties && lazy load dynamic ones
/// @param should be string or object
/// @returns options string or object
var getOptions = function (options) {
if (utils.isString(options)) {
return options;
// make sure topics, get converted to hex
options.topics = options.topics || [];
options.topics = options.topics.map(function(topic){
return (utils.isArray(topic)) ? topic.map(toTopic) : toTopic(topic);
return {
topics: options.topics,
from: options.from,
to: options.to,
address: options.address,
fromBlock: formatters.inputBlockNumberFormatter(options.fromBlock),
toBlock: formatters.inputBlockNumberFormatter(options.toBlock)
Adds the callback and sets up the methods, to iterate over the results.
@method getLogsAtStart
@param {Object} self
@param {funciton}
var getLogsAtStart = function(self, callback){
// call getFilterLogs for the first watch callback start
if (!utils.isString(self.options)) {
self.get(function (err, messages) {
// don't send all the responses to all the watches again... just to self one
if(utils.isArray(messages)) {
messages.forEach(function (message) {
callback(null, message);
@method pollFilter
var pollFilter = function(self) {
var onMessage = function (error, messages) {
if (error) {
return self.callbacks.forEach(function (callback) {
callback(error);
message = self.formatter ? self.formatter(message) : message;
self.callbacks.forEach(function (callback) {
self.requestManager.startPolling({
method: self.implementation.poll.call,
params: [self.filterId],
}, self.filterId, onMessage, self.stopWatching.bind(self));
var Filter = function (requestManager, options, methods, formatter, callback) {
var implementation = {};
methods.forEach(function (method) {
method.setRequestManager(requestManager);
method.attachToObject(implementation);
this.requestManager = requestManager;
this.options = getOptions(options);
this.implementation = implementation;
this.filterId = null;
this.callbacks = [];
this.getLogsCallbacks = [];
this.pollFilters = [];
this.formatter = formatter;
this.implementation.newFilter(this.options, function(error, id){
if(error) {
self.callbacks.forEach(function(cb){
cb(error);
self.filterId = id;
// check if there are get pending callbacks as a consequence
// of calling get() with filterId unassigned.
self.getLogsCallbacks.forEach(function (cb){
self.get(cb);
self.getLogsCallbacks = [];
// get filter logs for the already existing watch calls
getLogsAtStart(self, cb);
if(self.callbacks.length > 0)
pollFilter(self);
// start to watch immediately
if(typeof callback === 'function') {
return self.watch(callback);
return this;
Filter.prototype.watch = function (callback) {
this.callbacks.push(callback);
if(this.filterId) {
getLogsAtStart(this, callback);
pollFilter(this);
Filter.prototype.stopWatching = function () {
this.requestManager.stopPolling(this.filterId);
// remove filter async
this.implementation.uninstallFilter(this.filterId, function(){});
Filter.prototype.get = function (callback) {
if (utils.isFunction(callback)) {
if (this.filterId === null) {
// If filterId is not set yet, call it back
// when newFilter() assigns it.
this.getLogsCallbacks.push(callback);
this.implementation.getLogs(this.filterId, function(err, res){
callback(null, res.map(function (log) {
return self.formatter ? self.formatter(log) : log;
}));
throw new Error('Filter ID Error: filter().get() can\'t be chained synchronous, please provide a callback for the get() method.');
var logs = this.implementation.getLogs(this.filterId);
return logs.map(function (log) {
module.exports = Filter;
},{"../utils/utils":20,"./formatters":30}],30:[function(require,module,exports){
* @author Fabian Vogelsteller <fabian@ethdev.com>
var config = require('../utils/config');
var Iban = require('./iban');
* Should the format output to a big number
* @method outputBigNumberFormatter
* @returns {BigNumber} object
var outputBigNumberFormatter = function (number) {
return utils.toBigNumber(number);
var isPredefinedBlockNumber = function (blockNumber) {
return blockNumber === 'latest' || blockNumber === 'pending' || blockNumber === 'earliest';
var inputDefaultBlockNumberFormatter = function (blockNumber) {
if (blockNumber === undefined) {
return config.defaultBlock;
return inputBlockNumberFormatter(blockNumber);
var inputBlockNumberFormatter = function (blockNumber) {
return undefined;
} else if (isPredefinedBlockNumber(blockNumber)) {
return blockNumber;
return utils.toHex(blockNumber);
* Formats the input of a transaction and converts all values to HEX
* @method inputCallFormatter
* @param {Object} transaction options
* @returns object
var inputCallFormatter = function (options){
options.from = options.from || config.defaultAccount;
if (options.from) {
options.from = inputAddressFormatter(options.from);
if (options.to) { // it might be contract creation
options.to = inputAddressFormatter(options.to);
['gasPrice', 'gas', 'value', 'nonce'].filter(function (key) {
return options[key] !== undefined;
}).forEach(function(key){
options[key] = utils.fromDecimal(options[key]);
* @method inputTransactionFormatter
var inputTransactionFormatter = function (options){
* Formats the output of a transaction to its proper values
* @method outputTransactionFormatter
* @param {Object} tx
* @returns {Object}
var outputTransactionFormatter = function (tx){
if(tx.blockNumber !== null)
tx.blockNumber = utils.toDecimal(tx.blockNumber);
if(tx.transactionIndex !== null)
tx.transactionIndex = utils.toDecimal(tx.transactionIndex);
tx.nonce = utils.toDecimal(tx.nonce);
tx.gas = utils.toDecimal(tx.gas);
tx.gasPrice = utils.toBigNumber(tx.gasPrice);
tx.value = utils.toBigNumber(tx.value);
return tx;
* Formats the output of a transaction receipt to its proper values
* @method outputTransactionReceiptFormatter
* @param {Object} receipt
var outputTransactionReceiptFormatter = function (receipt){
if(receipt.blockNumber !== null)
receipt.blockNumber = utils.toDecimal(receipt.blockNumber);
if(receipt.transactionIndex !== null)
receipt.transactionIndex = utils.toDecimal(receipt.transactionIndex);
receipt.cumulativeGasUsed = utils.toDecimal(receipt.cumulativeGasUsed);
receipt.gasUsed = utils.toDecimal(receipt.gasUsed);
if(utils.isArray(receipt.logs)) {
receipt.logs = receipt.logs.map(function(log){
return outputLogFormatter(log);
return receipt;
* Formats the output of a block to its proper values
* @method outputBlockFormatter
* @param {Object} block
var outputBlockFormatter = function(block) {
// transform to number
block.gasLimit = utils.toDecimal(block.gasLimit);
block.gasUsed = utils.toDecimal(block.gasUsed);
block.size = utils.toDecimal(block.size);
block.timestamp = utils.toDecimal(block.timestamp);
if(block.number !== null)
block.number = utils.toDecimal(block.number);
block.difficulty = utils.toBigNumber(block.difficulty);
block.totalDifficulty = utils.toBigNumber(block.totalDifficulty);
if (utils.isArray(block.transactions)) {
block.transactions.forEach(function(item){
if(!utils.isString(item))
return outputTransactionFormatter(item);
return block;
* Formats the output of a log
* @method outputLogFormatter
* @param {Object} log object
* @returns {Object} log
var outputLogFormatter = function(log) {
if(log.blockNumber !== null)
log.blockNumber = utils.toDecimal(log.blockNumber);
if(log.transactionIndex !== null)
log.transactionIndex = utils.toDecimal(log.transactionIndex);
if(log.logIndex !== null)
log.logIndex = utils.toDecimal(log.logIndex);
return log;
* Formats the input of a whisper post and converts all values to HEX
* @method inputPostFormatter
* @param {Object} transaction object
var inputPostFormatter = function(post) {
// post.payload = utils.toHex(post.payload);
post.ttl = utils.fromDecimal(post.ttl);
post.workToProve = utils.fromDecimal(post.workToProve);
post.priority = utils.fromDecimal(post.priority);
// fallback
if (!utils.isArray(post.topics)) {
post.topics = post.topics ? [post.topics] : [];
// format the following options
post.topics = post.topics.map(function(topic){
// convert only if not hex
return (topic.indexOf('0x') === 0) ? topic : utils.fromUtf8(topic);
return post;
* Formats the output of a received post message
* @method outputPostFormatter
var outputPostFormatter = function(post){
post.expiry = utils.toDecimal(post.expiry);
post.sent = utils.toDecimal(post.sent);
post.ttl = utils.toDecimal(post.ttl);
post.workProved = utils.toDecimal(post.workProved);
// post.payloadRaw = post.payload;
// post.payload = utils.toAscii(post.payload);
// if (utils.isJson(post.payload)) {
// post.payload = JSON.parse(post.payload);
// }
if (!post.topics) {
post.topics = [];
return utils.toAscii(topic);
var inputAddressFormatter = function (address) {
var iban = new Iban(address);
if (iban.isValid() && iban.isDirect()) {
return '0x' + iban.address();
} else if (utils.isStrictAddress(address)) {
} else if (utils.isAddress(address)) {
throw new Error('invalid address');
var outputSyncingFormatter = function(result) {
result.startingBlock = utils.toDecimal(result.startingBlock);
result.currentBlock = utils.toDecimal(result.currentBlock);
result.highestBlock = utils.toDecimal(result.highestBlock);
if (result.knownStates !== undefined) {
result.knownStates = utils.toDecimal(result.knownStates);
if (result.pulledStates !== undefined) {
result.pulledStates = utils.toDecimal(result.pulledStates);
inputDefaultBlockNumberFormatter: inputDefaultBlockNumberFormatter,
inputBlockNumberFormatter: inputBlockNumberFormatter,
inputCallFormatter: inputCallFormatter,
inputTransactionFormatter: inputTransactionFormatter,
inputAddressFormatter: inputAddressFormatter,
inputPostFormatter: inputPostFormatter,
outputBigNumberFormatter: outputBigNumberFormatter,
outputTransactionFormatter: outputTransactionFormatter,
outputTransactionReceiptFormatter: outputTransactionReceiptFormatter,
outputBlockFormatter: outputBlockFormatter,
outputLogFormatter: outputLogFormatter,
outputPostFormatter: outputPostFormatter,
outputSyncingFormatter: outputSyncingFormatter
},{"../utils/config":18,"../utils/utils":20,"./iban":33}],31:[function(require,module,exports){
* @file function.js
* This prototype should be used to call/sendTransaction to solidity functions
var SolidityFunction = function (eth, json, address) {
this._inputTypes = json.inputs.map(function (i) {
this._outputTypes = json.outputs.map(function (i) {
this._constant = json.constant;
SolidityFunction.prototype.extractCallback = function (args) {
return args.pop(); // modify the args array!
SolidityFunction.prototype.extractDefaultBlock = function (args) {
if (args.length > this._inputTypes.length && !utils.isObject(args[args.length -1])) {
return formatters.inputDefaultBlockNumberFormatter(args.pop()); // modify the args array!
* Should be used to create payload from arguments
* @method toPayload
* @param {Array} solidity function params
* @param {Object} optional payload options
SolidityFunction.prototype.toPayload = function (args) {
var options = {};
if (args.length > this._inputTypes.length && utils.isObject(args[args.length -1])) {
options = args[args.length - 1];
options.to = this._address;
options.data = '0x' + this.signature() + coder.encodeParams(this._inputTypes, args);
* Should be used to get function signature
* @return {String} function signature
SolidityFunction.prototype.signature = function () {
return sha3(this._name).slice(0, 8);
SolidityFunction.prototype.unpackOutput = function (output) {
if (!output) {
output = output.length >= 2 ? output.slice(2) : output;
var result = coder.decodeParams(this._outputTypes, output);
return result.length === 1 ? result[0] : result;
* Calls a contract function.
* @method call
* @param {...Object} Contract function arguments
* @param {function} If the last argument is a function, the contract function
* call will be asynchronous, and the callback will be passed the
* error and result.
* @return {String} output bytes
SolidityFunction.prototype.call = function () {
var args = Array.prototype.slice.call(arguments).filter(function (a) {return a !== undefined; });
var callback = this.extractCallback(args);
var defaultBlock = this.extractDefaultBlock(args);
var payload = this.toPayload(args);
if (!callback) {
var output = this._eth.call(payload, defaultBlock);
return this.unpackOutput(output);
this._eth.call(payload, defaultBlock, function (error, output) {
callback(error, self.unpackOutput(output));
* Should be used to sendTransaction to solidity function
* @method sendTransaction
SolidityFunction.prototype.sendTransaction = function () {
return this._eth.sendTransaction(payload);
this._eth.sendTransaction(payload, callback);
* Should be used to estimateGas of solidity function
* @method estimateGas
SolidityFunction.prototype.estimateGas = function () {
return this._eth.estimateGas(payload);
this._eth.estimateGas(payload, callback);
* Return the encoded data of the call
* @return {String} the encoded data
SolidityFunction.prototype.getData = function () {
return payload.data;
* Should be used to get function display name
* @return {String} display name of the function
SolidityFunction.prototype.displayName = function () {
* Should be used to get function type name
* @return {String} type name of the function
SolidityFunction.prototype.typeName = function () {
* Should be called to get rpc requests from solidity function
* @method request
SolidityFunction.prototype.request = function () {
var format = this.unpackOutput.bind(this);
method: this._constant ? 'eth_call' : 'eth_sendTransaction',
callback: callback,
params: [payload],
format: format
* Should be called to execute function
SolidityFunction.prototype.execute = function () {
var transaction = !this._constant;
// send transaction
if (transaction) {
return this.sendTransaction.apply(this, Array.prototype.slice.call(arguments));
// call
return this.call.apply(this, Array.prototype.slice.call(arguments));
* Should be called to attach function to contract
SolidityFunction.prototype.attachToContract = function (contract) {
execute.request = this.request.bind(this);
execute.call = this.call.bind(this);
execute.sendTransaction = this.sendTransaction.bind(this);
execute.estimateGas = this.estimateGas.bind(this);
execute.getData = this.getData.bind(this);
contract[displayName][this.typeName()] = execute; // circular!!!!
module.exports = SolidityFunction;
},{"../solidity/coder":7,"../utils/sha3":19,"../utils/utils":20,"./formatters":30}],32:[function(require,module,exports){
/** @file httpprovider.js
"use strict";
// workaround to use httpprovider in different envs
var XMLHttpRequest; // jshint ignore: line
// meteor server environment
if (typeof Meteor !== 'undefined' && Meteor.isServer) { // jshint ignore: line
XMLHttpRequest = Npm.require('xmlhttprequest').XMLHttpRequest; // jshint ignore: line
// browser
} else if (typeof window !== 'undefined' && window.XMLHttpRequest) {
XMLHttpRequest = window.XMLHttpRequest; // jshint ignore: line
// node
XMLHttpRequest = require('xmlhttprequest').XMLHttpRequest; // jshint ignore: line
* HttpProvider should be used to send rpc calls over http
var HttpProvider = function (host) {
this.host = host || 'http://localhost:8545';
* Should be called to prepare new XMLHttpRequest
* @method prepareRequest
* @param {Boolean} true if request should be async
* @return {XMLHttpRequest} object
HttpProvider.prototype.prepareRequest = function (async) {
var request = new XMLHttpRequest();
request.open('POST', this.host, async);
request.setRequestHeader('Content-Type','application/json');
return request;
* Should be called to make sync request
* @method send
* @param {Object} payload
* @return {Object} result
HttpProvider.prototype.send = function (payload) {
var request = this.prepareRequest(false);
request.send(JSON.stringify(payload));
} catch(error) {
throw errors.InvalidConnection(this.host);
var result = request.responseText;
result = JSON.parse(result);
} catch(e) {
throw errors.InvalidResponse(request.responseText);
* Should be used to make async request
* @method sendAsync
* @param {Function} callback triggered on end with (err, result)
HttpProvider.prototype.sendAsync = function (payload, callback) {
var request = this.prepareRequest(true);
request.onreadystatechange = function() {
if (request.readyState === 4) {
var error = null;
error = errors.InvalidResponse(request.responseText);
callback(error, result);
callback(errors.InvalidConnection(this.host));
* Synchronously tries to make Http request
* @method isConnected
* @return {Boolean} returns true if request haven't failed. Otherwise false
HttpProvider.prototype.isConnected = function() {
this.send({
id: 9999999999,
jsonrpc: '2.0',
method: 'net_listening',
params: []
module.exports = HttpProvider;
},{"./errors":26,"xmlhttprequest":17}],33:[function(require,module,exports){
* @file iban.js
var padLeft = function (string, bytes) {
var result = string;
while (result.length < bytes * 2) {
result = '00' + result;
* Prepare an IBAN for mod 97 computation by moving the first 4 chars to the end and transforming the letters to
* numbers (A = 10, B = 11, ..., Z = 35), as specified in ISO13616.
* @method iso13616Prepare
* @param {String} iban the IBAN
* @returns {String} the prepared IBAN
var iso13616Prepare = function (iban) {
var A = 'A'.charCodeAt(0);
var Z = 'Z'.charCodeAt(0);
iban = iban.toUpperCase();
iban = iban.substr(4) + iban.substr(0,4);
return iban.split('').map(function(n){
var code = n.charCodeAt(0);
if (code >= A && code <= Z){
// A = 10, B = 11, ... Z = 35
return code - A + 10;
return n;
}).join('');
* Calculates the MOD 97 10 of the passed IBAN as specified in ISO7064.
* @method mod9710
* @param {String} iban
* @returns {Number}
var mod9710 = function (iban) {
var remainder = iban,
block;
while (remainder.length > 2){
block = remainder.slice(0, 9);
remainder = parseInt(block, 10) % 97 + remainder.slice(block.length);
return parseInt(remainder, 10) % 97;
* This prototype should be used to create iban object from iban correct string
var Iban = function (iban) {
this._iban = iban;
* This method should be used to create iban object from ethereum address
* @method fromAddress
* @return {Iban} the IBAN object
Iban.fromAddress = function (address) {
var asBn = new BigNumber(address, 16);
var base36 = asBn.toString(36);
var padded = padLeft(base36, 15);
return Iban.fromBban(padded.toUpperCase());
* Convert the passed BBAN to an IBAN for this country specification.
* Please note that <i>"generation of the IBAN shall be the exclusive responsibility of the bank/branch servicing the account"</i>.
* This method implements the preferred algorithm described in http://en.wikipedia.org/wiki/International_Bank_Account_Number#Generating_IBAN_check_digits
* @method fromBban
* @param {String} bban the BBAN to convert to IBAN
* @returns {Iban} the IBAN object
Iban.fromBban = function (bban) {
var countryCode = 'XE';
var remainder = mod9710(iso13616Prepare(countryCode + '00' + bban));
var checkDigit = ('0' + (98 - remainder)).slice(-2);
return new Iban(countryCode + checkDigit + bban);
* Should be used to create IBAN object for given institution and identifier
* @method createIndirect
* @param {Object} options, required options are "institution" and "identifier"
Iban.createIndirect = function (options) {
return Iban.fromBban('ETH' + options.institution + options.identifier);
* Thos method should be used to check if given string is valid iban object
* @method isValid
* @param {String} iban string
* @return {Boolean} true if it is valid IBAN
Iban.isValid = function (iban) {
var i = new Iban(iban);
return i.isValid();
* Should be called to check if iban is correct
* @returns {Boolean} true if it is, otherwise false
Iban.prototype.isValid = function () {
return /^XE[0-9]{2}(ETH[0-9A-Z]{13}|[0-9A-Z]{30,31})$/.test(this._iban) &&
mod9710(iso13616Prepare(this._iban)) === 1;
* Should be called to check if iban number is direct
* @method isDirect
Iban.prototype.isDirect = function () {
return this._iban.length === 34 || this._iban.length === 35;
* Should be called to check if iban number if indirect
* @method isIndirect
Iban.prototype.isIndirect = function () {
return this._iban.length === 20;
* Should be called to get iban checksum
* Uses the mod-97-10 checksumming protocol (ISO/IEC 7064:2003)
* @method checksum
* @returns {String} checksum
Iban.prototype.checksum = function () {
return this._iban.substr(2, 2);
* Should be called to get institution identifier
* eg. XREG
* @method institution
* @returns {String} institution identifier
Iban.prototype.institution = function () {
return this.isIndirect() ? this._iban.substr(7, 4) : '';
* Should be called to get client identifier within institution
* eg. GAVOFYORK
* @method client
* @returns {String} client identifier
Iban.prototype.client = function () {
return this.isIndirect() ? this._iban.substr(11) : '';
* Should be called to get client direct address
* @method address
* @returns {String} client direct address
Iban.prototype.address = function () {
if (this.isDirect()) {
var base36 = this._iban.substr(4);
var asBn = new BigNumber(base36, 36);
return padLeft(asBn.toString(16), 20);
return '';
Iban.prototype.toString = function () {
return this._iban;
module.exports = Iban;
},{"bignumber.js":"bignumber.js"}],34:[function(require,module,exports){
/** @file ipcprovider.js
var IpcProvider = function (path, net) {
var _this = this;
this.responseCallbacks = {};
this.path = path;
this.connection = net.connect({path: this.path});
this.connection.on('error', function(e){
console.error('IPC Connection Error', e);
_this._timeout();
this.connection.on('end', function(){
// LISTEN FOR CONNECTION RESPONSES
this.connection.on('data', function(data) {
_this._parseResponse(data.toString()).forEach(function(result){
var id = null;
// get the id which matches the returned id
if(utils.isArray(result)) {
result.forEach(function(load){
if(_this.responseCallbacks[load.id])
id = load.id;
id = result.id;
// fire the callback
if(_this.responseCallbacks[id]) {
_this.responseCallbacks[id](null, result);
delete _this.responseCallbacks[id];
Will parse the response and make an array out of it.
@method _parseResponse
@param {String} data
IpcProvider.prototype._parseResponse = function(data) {
var _this = this,
returnValues = [];
// DE-CHUNKER
var dechunkedData = data
.replace(/\}[\n\r]?\{/g,'}|--|{') // }{
.replace(/\}\][\n\r]?\[\{/g,'}]|--|[{') // }][{
.replace(/\}[\n\r]?\[\{/g,'}|--|[{') // }[{
.replace(/\}\][\n\r]?\{/g,'}]|--|{') // }]{
.split('|--|');
dechunkedData.forEach(function(data){
// prepend the last chunk
if(_this.lastChunk)
data = _this.lastChunk + data;
var result = null;
result = JSON.parse(data);
_this.lastChunk = data;
// start timeout to cancel all requests
clearTimeout(_this.lastChunkTimeout);
_this.lastChunkTimeout = setTimeout(function(){
throw errors.InvalidResponse(data);
}, 1000 * 15);
// cancel timeout and set chunk to null
_this.lastChunk = null;
if(result)
returnValues.push(result);
return returnValues;
Get the adds a callback to the responseCallbacks object,
which will be called if a response matching the response Id will arrive.
@method _addResponseCallback
IpcProvider.prototype._addResponseCallback = function(payload, callback) {
var id = payload.id || payload[0].id;
var method = payload.method || payload[0].method;
this.responseCallbacks[id] = callback;
this.responseCallbacks[id].method = method;
Timeout all requests when the end/error event is fired
@method _timeout
IpcProvider.prototype._timeout = function() {
for(var key in this.responseCallbacks) {
if(this.responseCallbacks.hasOwnProperty(key)){
this.responseCallbacks[key](errors.InvalidConnection('on IPC'));
delete this.responseCallbacks[key];
Check if the current connection is still valid.
@method isConnected
IpcProvider.prototype.isConnected = function() {
// try reconnect, when connection is gone
if(!_this.connection.writable)
_this.connection.connect({path: _this.path});
return !!this.connection.writable;
IpcProvider.prototype.send = function (payload) {
if(this.connection.writeSync) {
var result;
if(!this.connection.writable)
this.connection.connect({path: this.path});
var data = this.connection.writeSync(JSON.stringify(payload));
throw new Error('You tried to send "'+ payload.method +'" synchronously. Synchronous requests are not supported by the IPC provider.');
IpcProvider.prototype.sendAsync = function (payload, callback) {
this.connection.write(JSON.stringify(payload));
this._addResponseCallback(payload, callback);
module.exports = IpcProvider;
},{"../utils/utils":20,"./errors":26}],35:[function(require,module,exports){
/** @file jsonrpc.js
var Jsonrpc = function () {
// singleton pattern
if (arguments.callee._singletonInstance) {
return arguments.callee._singletonInstance;
arguments.callee._singletonInstance = this;
this.messageId = 1;
* @return {Jsonrpc} singleton
Jsonrpc.getInstance = function () {
var instance = new Jsonrpc();
return instance;
* Should be called to valid json create payload object
* @param {Function} method of jsonrpc call, required
* @param {Array} params, an array of method params, optional
* @returns {Object} valid jsonrpc payload object
Jsonrpc.prototype.toPayload = function (method, params) {
if (!method)
console.error('jsonrpc method should be specified!');
method: method,
params: params || [],
id: this.messageId++
* Should be called to check if jsonrpc response is valid
* @method isValidResponse
* @returns {Boolean} true if response is valid, otherwise false
Jsonrpc.prototype.isValidResponse = function (response) {
return !!response &&
!response.error &&
response.jsonrpc === '2.0' &&
typeof response.id === 'number' &&
response.result !== undefined; // only undefined is not valid json object
* Should be called to create batch payload object
* @method toBatchPayload
* @param {Array} messages, an array of objects with method (required) and params (optional) fields
* @returns {Array} batch payload
Jsonrpc.prototype.toBatchPayload = function (messages) {
return messages.map(function (message) {
return self.toPayload(message.method, message.params);
module.exports = Jsonrpc;
},{}],36:[function(require,module,exports){
* @file method.js
var Method = function (options) {
this.name = options.name;
this.call = options.call;
this.params = options.params || 0;
this.inputFormatter = options.inputFormatter;
this.outputFormatter = options.outputFormatter;
this.requestManager = null;
Method.prototype.setRequestManager = function (rm) {
this.requestManager = rm;
* Should be used to determine name of the jsonrpc method based on arguments
* @method getCall
* @param {Array} arguments
* @return {String} name of jsonrpc method
Method.prototype.getCall = function (args) {
return utils.isFunction(this.call) ? this.call(args) : this.call;
* Should be used to extract callback from array of arguments. Modifies input param
* @method extractCallback
* @return {Function|Null} callback, if exists
Method.prototype.extractCallback = function (args) {
* Should be called to check if the number of arguments is correct
* @method validateArgs
* @throws {Error} if it is not
Method.prototype.validateArgs = function (args) {
if (args.length !== this.params) {
throw errors.InvalidNumberOfParams();
* Should be called to format input args of method
* @method formatInput
* @param {Array}
* @return {Array}
Method.prototype.formatInput = function (args) {
if (!this.inputFormatter) {
return args;
return this.inputFormatter.map(function (formatter, index) {
return formatter ? formatter(args[index]) : args[index];
* Should be called to format output(result) of method
* @method formatOutput
* @return {Object}
Method.prototype.formatOutput = function (result) {
return this.outputFormatter && result ? this.outputFormatter(result) : result;
* Should create payload from given input args
* @param {Array} args
Method.prototype.toPayload = function (args) {
var call = this.getCall(args);
var params = this.formatInput(args);
this.validateArgs(params);
method: call,
params: params,
callback: callback
Method.prototype.attachToObject = function (obj) {
var func = this.buildCall();
func.call = this.call; // TODO!!! that's ugly. filter.js uses it
var name = this.name.split('.');
if (name.length > 1) {
obj[name[0]] = obj[name[0]] || {};
obj[name[0]][name[1]] = func;
obj[name[0]] = func;
Method.prototype.buildCall = function() {
var method = this;
var send = function () {
var payload = method.toPayload(Array.prototype.slice.call(arguments));
if (payload.callback) {
return method.requestManager.sendAsync(payload, function (err, result) {
payload.callback(err, method.formatOutput(result));
return method.formatOutput(method.requestManager.send(payload));
send.request = this.request.bind(this);
return send;
* Should be called to create pure JSONRPC request which can be used in batch request
* @param {...} params
* @return {Object} jsonrpc request
Method.prototype.request = function () {
var payload = this.toPayload(Array.prototype.slice.call(arguments));
payload.format = this.formatOutput.bind(this);
return payload;
module.exports = Method;
},{"../utils/utils":20,"./errors":26}],37:[function(require,module,exports){
/** @file db.js
var Method = require('../method');
var DB = function (web3) {
this._requestManager = web3._requestManager;
methods().forEach(function(method) {
method.attachToObject(self);
var methods = function () {
var putString = new Method({
name: 'putString',
call: 'db_putString',
params: 3
var getString = new Method({
name: 'getString',
call: 'db_getString',
params: 2
var putHex = new Method({
name: 'putHex',
call: 'db_putHex',
var getHex = new Method({
name: 'getHex',
call: 'db_getHex',
putString, getString, putHex, getHex
module.exports = DB;
},{"../method":36}],38:[function(require,module,exports){
* @file eth.js
var formatters = require('../formatters');
var utils = require('../../utils/utils');
var Property = require('../property');
var c = require('../../utils/config');
var Contract = require('../contract');
var watches = require('./watches');
var Filter = require('../filter');
var IsSyncing = require('../syncing');
var namereg = require('../namereg');
var Iban = require('../iban');
var transfer = require('../transfer');
var blockCall = function (args) {
return (utils.isString(args[0]) && args[0].indexOf('0x') === 0) ? "eth_getBlockByHash" : "eth_getBlockByNumber";
var transactionFromBlockCall = function (args) {
return (utils.isString(args[0]) && args[0].indexOf('0x') === 0) ? 'eth_getTransactionByBlockHashAndIndex' : 'eth_getTransactionByBlockNumberAndIndex';
var uncleCall = function (args) {
return (utils.isString(args[0]) && args[0].indexOf('0x') === 0) ? 'eth_getUncleByBlockHashAndIndex' : 'eth_getUncleByBlockNumberAndIndex';
var getBlockTransactionCountCall = function (args) {
return (utils.isString(args[0]) && args[0].indexOf('0x') === 0) ? 'eth_getBlockTransactionCountByHash' : 'eth_getBlockTransactionCountByNumber';
var uncleCountCall = function (args) {
return (utils.isString(args[0]) && args[0].indexOf('0x') === 0) ? 'eth_getUncleCountByBlockHash' : 'eth_getUncleCountByBlockNumber';
function Eth(web3) {
method.setRequestManager(self._requestManager);
properties().forEach(function(p) {
p.attachToObject(self);
p.setRequestManager(self._requestManager);
this.iban = Iban;
this.sendIBANTransaction = transfer.bind(null, this);
Object.defineProperty(Eth.prototype, 'defaultBlock', {
get: function () {
return c.defaultBlock;
set: function (val) {
c.defaultBlock = val;
Object.defineProperty(Eth.prototype, 'defaultAccount', {
return c.defaultAccount;
c.defaultAccount = val;
var getBalance = new Method({
name: 'getBalance',
call: 'eth_getBalance',
params: 2,
inputFormatter: [formatters.inputAddressFormatter, formatters.inputDefaultBlockNumberFormatter],
outputFormatter: formatters.outputBigNumberFormatter
var getStorageAt = new Method({
name: 'getStorageAt',
call: 'eth_getStorageAt',
params: 3,
inputFormatter: [null, utils.toHex, formatters.inputDefaultBlockNumberFormatter]
var getCode = new Method({
name: 'getCode',
call: 'eth_getCode',
inputFormatter: [formatters.inputAddressFormatter, formatters.inputDefaultBlockNumberFormatter]
var getBlock = new Method({
name: 'getBlock',
call: blockCall,
inputFormatter: [formatters.inputBlockNumberFormatter, function (val) { return !!val; }],
outputFormatter: formatters.outputBlockFormatter
var getUncle = new Method({
name: 'getUncle',
call: uncleCall,
inputFormatter: [formatters.inputBlockNumberFormatter, utils.toHex],
outputFormatter: formatters.outputBlockFormatter,
var getCompilers = new Method({
name: 'getCompilers',
call: 'eth_getCompilers',
params: 0
var getBlockTransactionCount = new Method({
name: 'getBlockTransactionCount',
call: getBlockTransactionCountCall,
params: 1,
inputFormatter: [formatters.inputBlockNumberFormatter],
outputFormatter: utils.toDecimal
var getBlockUncleCount = new Method({
name: 'getBlockUncleCount',
call: uncleCountCall,
var getTransaction = new Method({
name: 'getTransaction',
call: 'eth_getTransactionByHash',
outputFormatter: formatters.outputTransactionFormatter
var getTransactionFromBlock = new Method({
name: 'getTransactionFromBlock',
call: transactionFromBlockCall,
var getTransactionReceipt = new Method({
name: 'getTransactionReceipt',
call: 'eth_getTransactionReceipt',
outputFormatter: formatters.outputTransactionReceiptFormatter
var getTransactionCount = new Method({
name: 'getTransactionCount',
call: 'eth_getTransactionCount',
inputFormatter: [null, formatters.inputDefaultBlockNumberFormatter],
var sendRawTransaction = new Method({
name: 'sendRawTransaction',
call: 'eth_sendRawTransaction',
inputFormatter: [null]
var sendTransaction = new Method({
name: 'sendTransaction',
call: 'eth_sendTransaction',
inputFormatter: [formatters.inputTransactionFormatter]
var sign = new Method({
name: 'sign',
call: 'eth_sign',
inputFormatter: [formatters.inputAddressFormatter, null]
var call = new Method({
name: 'call',
call: 'eth_call',
inputFormatter: [formatters.inputCallFormatter, formatters.inputDefaultBlockNumberFormatter]
var estimateGas = new Method({
name: 'estimateGas',
call: 'eth_estimateGas',
inputFormatter: [formatters.inputCallFormatter],
var compileSolidity = new Method({
name: 'compile.solidity',
call: 'eth_compileSolidity',
params: 1
var compileLLL = new Method({
name: 'compile.lll',
call: 'eth_compileLLL',
var compileSerpent = new Method({
name: 'compile.serpent',
call: 'eth_compileSerpent',
var submitWork = new Method({
name: 'submitWork',
call: 'eth_submitWork',
var getWork = new Method({
name: 'getWork',
call: 'eth_getWork',
getBalance,
getStorageAt,
getCode,
getBlock,
getUncle,
getCompilers,
getBlockTransactionCount,
getBlockUncleCount,
getTransaction,
getTransactionFromBlock,
getTransactionReceipt,
getTransactionCount,
call,
estimateGas,
sendRawTransaction,
sendTransaction,
sign,
compileSolidity,
compileLLL,
compileSerpent,
submitWork,
getWork
name: 'coinbase',
getter: 'eth_coinbase'
name: 'mining',
getter: 'eth_mining'
name: 'hashrate',
getter: 'eth_hashrate',
name: 'syncing',
getter: 'eth_syncing',
outputFormatter: formatters.outputSyncingFormatter
name: 'gasPrice',
getter: 'eth_gasPrice',
name: 'accounts',
getter: 'eth_accounts'
name: 'blockNumber',
getter: 'eth_blockNumber',
Eth.prototype.contract = function (abi) {
var factory = new Contract(this, abi);
return factory;
Eth.prototype.filter = function (fil, callback) {
return new Filter(this._requestManager, fil, watches.eth(), formatters.outputLogFormatter, callback);
Eth.prototype.namereg = function () {
return this.contract(namereg.global.abi).at(namereg.global.address);
Eth.prototype.icapNamereg = function () {
return this.contract(namereg.icap.abi).at(namereg.icap.address);
Eth.prototype.isSyncing = function (callback) {
return new IsSyncing(this._requestManager, callback);
module.exports = Eth;
},{"../../utils/config":18,"../../utils/utils":20,"../contract":25,"../filter":29,"../formatters":30,"../iban":33,"../method":36,"../namereg":43,"../property":44,"../syncing":47,"../transfer":48,"./watches":42}],39:[function(require,module,exports){
/** @file eth.js
var Net = function (web3) {
p.setRequestManager(web3._requestManager);
/// @returns an array of objects describing web3.eth api properties
name: 'listening',
getter: 'net_listening'
name: 'peerCount',
getter: 'net_peerCount',
module.exports = Net;
},{"../../utils/utils":20,"../property":44}],40:[function(require,module,exports){
function Personal(web3) {
var newAccount = new Method({
name: 'newAccount',
call: 'personal_newAccount',
var unlockAccount = new Method({
name: 'unlockAccount',
call: 'personal_unlockAccount',
inputFormatter: [formatters.inputAddressFormatter, null, null]
var lockAccount = new Method({
name: 'lockAccount',
call: 'personal_lockAccount',
inputFormatter: [formatters.inputAddressFormatter]
newAccount,
unlockAccount,
lockAccount
name: 'listAccounts',
getter: 'personal_listAccounts'
module.exports = Personal;
},{"../formatters":30,"../method":36,"../property":44}],41:[function(require,module,exports){
/** @file shh.js
var Shh = function (web3) {
Shh.prototype.filter = function (fil, callback) {
return new Filter(this._requestManager, fil, watches.shh(), formatters.outputPostFormatter, callback);
var post = new Method({
name: 'post',
call: 'shh_post',
inputFormatter: [formatters.inputPostFormatter]
var newIdentity = new Method({
name: 'newIdentity',
call: 'shh_newIdentity',
var hasIdentity = new Method({
name: 'hasIdentity',
call: 'shh_hasIdentity',
var newGroup = new Method({
name: 'newGroup',
call: 'shh_newGroup',
var addToGroup = new Method({
name: 'addToGroup',
call: 'shh_addToGroup',
post,
newIdentity,
hasIdentity,
newGroup,
addToGroup
module.exports = Shh;
},{"../filter":29,"../formatters":30,"../method":36,"./watches":42}],42:[function(require,module,exports){
/** @file watches.js
/// @returns an array of objects describing web3.eth.filter api methods
var eth = function () {
var newFilterCall = function (args) {
var type = args[0];
switch(type) {
case 'latest':
args.shift();
this.params = 0;
return 'eth_newBlockFilter';
case 'pending':
return 'eth_newPendingTransactionFilter';
default:
return 'eth_newFilter';
var newFilter = new Method({
name: 'newFilter',
call: newFilterCall,
var uninstallFilter = new Method({
name: 'uninstallFilter',
call: 'eth_uninstallFilter',
var getLogs = new Method({
name: 'getLogs',
call: 'eth_getFilterLogs',
var poll = new Method({
name: 'poll',
call: 'eth_getFilterChanges',
newFilter,
uninstallFilter,
getLogs,
poll
/// @returns an array of objects describing web3.shh.watch api methods
var shh = function () {
call: 'shh_newFilter',
call: 'shh_uninstallFilter',
call: 'shh_getMessages',
call: 'shh_getFilterChanges',
eth: eth,
shh: shh
},{"../method":36}],43:[function(require,module,exports){
* @file namereg.js
var globalRegistrarAbi = require('../contracts/GlobalRegistrar.json');
var icapRegistrarAbi= require('../contracts/ICAPRegistrar.json');
var globalNameregAddress = '0xc6d9d2cd449a754c494264e1809c50e34d64562b';
var icapNameregAddress = '0xa1a111bc074c9cfa781f0c38e63bd51c91b8af00';
global: {
abi: globalRegistrarAbi,
address: globalNameregAddress
icap: {
abi: icapRegistrarAbi,
address: icapNameregAddress
},{"../contracts/GlobalRegistrar.json":1,"../contracts/ICAPRegistrar.json":2}],44:[function(require,module,exports){
* @file property.js
* @author Fabian Vogelsteller <fabian@frozeman.de>
var Property = function (options) {
this.getter = options.getter;
this.setter = options.setter;
Property.prototype.setRequestManager = function (rm) {
Property.prototype.formatInput = function (arg) {
return this.inputFormatter ? this.inputFormatter(arg) : arg;
Property.prototype.formatOutput = function (result) {
return this.outputFormatter && result !== null ? this.outputFormatter(result) : result;
Property.prototype.extractCallback = function (args) {
* Should attach function to method
* @method attachToObject
* @param {Function}
Property.prototype.attachToObject = function (obj) {
var proto = {
get: this.buildGet(),
enumerable: true
var names = this.name.split('.');
var name = names[0];
if (names.length > 1) {
obj[names[0]] = obj[names[0]] || {};
obj = obj[names[0]];
name = names[1];
Object.defineProperty(obj, name, proto);
obj[asyncGetterName(name)] = this.buildAsyncGet();
var asyncGetterName = function (name) {
return 'get' + name.charAt(0).toUpperCase() + name.slice(1);
Property.prototype.buildGet = function () {
var property = this;
return function get() {
return property.formatOutput(property.requestManager.send({
method: property.getter
Property.prototype.buildAsyncGet = function () {
var get = function (callback) {
property.requestManager.sendAsync({
}, function (err, result) {
callback(err, property.formatOutput(result));
get.request = this.request.bind(this);
return get;
Property.prototype.request = function () {
var payload = {
method: this.getter,
params: [],
callback: this.extractCallback(Array.prototype.slice.call(arguments))
module.exports = Property;
},{"../utils/utils":20}],45:[function(require,module,exports){
* @file requestmanager.js
* @author Jeffrey Wilcke <jeff@ethdev.com>
* @author Marian Oancea <marian@ethdev.com>
* @author Gav Wood <g@ethdev.com>
* It's responsible for passing messages to providers
* It's also responsible for polling the ethereum node for incoming messages
* Default poll timeout is 1 second
* Singleton
var RequestManager = function (provider) {
this.provider = provider;
this.polls = {};
this.timeout = null;
* Should be used to synchronously send request
RequestManager.prototype.send = function (data) {
if (!this.provider) {
console.error(errors.InvalidProvider());
var payload = Jsonrpc.getInstance().toPayload(data.method, data.params);
var result = this.provider.send(payload);
throw errors.InvalidResponse(result);
return result.result;
* Should be used to asynchronously send request
RequestManager.prototype.sendAsync = function (data, callback) {
return callback(errors.InvalidProvider());
this.provider.sendAsync(payload, function (err, result) {
return callback(err);
return callback(errors.InvalidResponse(result));
callback(null, result.result);
* Should be called to asynchronously send batch request
* @method sendBatch
* @param {Array} batch data
RequestManager.prototype.sendBatch = function (data, callback) {
var payload = Jsonrpc.getInstance().toBatchPayload(data);
this.provider.sendAsync(payload, function (err, results) {
if (!utils.isArray(results)) {
return callback(errors.InvalidResponse(results));
callback(err, results);
* Should be used to set provider of request manager
* @method setProvider
RequestManager.prototype.setProvider = function (p) {
this.provider = p;
* Should be used to start polling
* @method startPolling
* @param {Number} pollId
* @param {Function} uninstall
* @todo cleanup number of params
RequestManager.prototype.startPolling = function (data, pollId, callback, uninstall) {
this.polls[pollId] = {data: data, id: pollId, callback: callback, uninstall: uninstall};
// start polling
if (!this.timeout) {
this.poll();
* Should be used to stop polling for filter with given id
* @method stopPolling
RequestManager.prototype.stopPolling = function (pollId) {
delete this.polls[pollId];
// stop polling
if(Object.keys(this.polls).length === 0 && this.timeout) {
clearTimeout(this.timeout);
* Should be called to reset the polling mechanism of the request manager
* @method reset
RequestManager.prototype.reset = function (keepIsSyncing) {
for (var key in this.polls) {
// remove all polls, except sync polls,
// they need to be removed manually by calling syncing.stopWatching()
if(!keepIsSyncing || key.indexOf('syncPoll_') === -1) {
this.polls[key].uninstall();
delete this.polls[key];
* Should be called to poll for changes on filter with given id
* @method poll
RequestManager.prototype.poll = function () {
this.timeout = setTimeout(this.poll.bind(this), c.ETH_POLLING_TIMEOUT);
if (Object.keys(this.polls).length === 0) {
var pollsData = [];
var pollsIds = [];
pollsData.push(this.polls[key].data);
pollsIds.push(key);
if (pollsData.length === 0) {
var payload = Jsonrpc.getInstance().toBatchPayload(pollsData);
// map the request id to they poll id
var pollsIdMap = {};
payload.forEach(function(load, index){
pollsIdMap[load.id] = pollsIds[index];
this.provider.sendAsync(payload, function (error, results) {
// TODO: console log?
throw errors.InvalidResponse(results);
results.map(function (result) {
var id = pollsIdMap[result.id];
// make sure the filter is still installed after arrival of the request
if (self.polls[id]) {
result.callback = self.polls[id].callback;
} else
}).filter(function (result) {
return !!result;
var valid = Jsonrpc.getInstance().isValidResponse(result);
if (!valid) {
result.callback(errors.InvalidResponse(result));
return valid;
}).forEach(function (result) {
result.callback(null, result.result);
module.exports = RequestManager;
},{"../utils/config":18,"../utils/utils":20,"./errors":26,"./jsonrpc":35}],46:[function(require,module,exports){
var Settings = function () {
this.defaultBlock = 'latest';
this.defaultAccount = undefined;
module.exports = Settings;
},{}],47:[function(require,module,exports){
/** @file syncing.js
var count = 1;
@method pollSyncing
var pollSyncing = function(self) {
var onMessage = function (error, sync) {
if(utils.isObject(sync) && sync.startingBlock)
sync = formatters.outputSyncingFormatter(sync);
if (self.lastSyncState !== sync) {
// call the callback with true first so the app can stop anything, before receiving the sync data
if(!self.lastSyncState && utils.isObject(sync))
callback(null, true);
// call on the next CPU cycle, so the actions of the sync stop can be processes first
setTimeout(function() {
callback(null, sync);
self.lastSyncState = sync;
method: 'eth_syncing',
}, self.pollId, onMessage, self.stopWatching.bind(self));
var IsSyncing = function (requestManager, callback) {
this.pollId = 'syncPoll_'+ count++;
this.addCallback(callback);
this.lastSyncState = false;
pollSyncing(this);
IsSyncing.prototype.addCallback = function (callback) {
IsSyncing.prototype.stopWatching = function () {
this.requestManager.stopPolling(this.pollId);
module.exports = IsSyncing;
},{"../utils/utils":20,"./formatters":30}],48:[function(require,module,exports){
* @file transfer.js
var exchangeAbi = require('../contracts/SmartExchange.json');
* Should be used to make Iban transfer
* @method transfer
* @param {String} from
* @param {String} to iban
* @param {Value} value to be tranfered
* @param {Function} callback, callback
var transfer = function (eth, from, to, value, callback) {
var iban = new Iban(to);
if (!iban.isValid()) {
throw new Error('invalid iban address');
if (iban.isDirect()) {
return transferToAddress(eth, from, iban.address(), value, callback);
var address = eth.icapNamereg().addr(iban.institution());
return deposit(eth, from, address, value, iban.client());
eth.icapNamereg().addr(iban.institution(), function (err, address) {
return deposit(eth, from, address, value, iban.client(), callback);
* Should be used to transfer funds to certain address
* @method transferToAddress
* @param {String} to
var transferToAddress = function (eth, from, to, value, callback) {
return eth.sendTransaction({
address: to,
from: from,
value: value
}, callback);
* Should be used to deposit funds to generic Exchange contract (must implement deposit(bytes32) method!)
* @method deposit
* @param {Value} value to be transfered
* @param {String} client unique identifier
var deposit = function (eth, from, to, value, client, callback) {
var abi = exchangeAbi;
return eth.contract(abi).at(to).deposit(client, {
module.exports = transfer;
},{"../contracts/SmartExchange.json":3,"./iban":33}],49:[function(require,module,exports){
},{}],50:[function(require,module,exports){
;(function (root, factory, undef) {
if (typeof exports === "object") {
// CommonJS
module.exports = exports = factory(require("./core"), require("./enc-base64"), require("./md5"), require("./evpkdf"), require("./cipher-core"));
else if (typeof define === "function" && define.amd) {
// AMD
define(["./core", "./enc-base64", "./md5", "./evpkdf", "./cipher-core"], factory);
else {
// Global (browser)
factory(root.CryptoJS);
}(this, function (CryptoJS) {
// Shortcuts
var C = CryptoJS;
var C_lib = C.lib;
var BlockCipher = C_lib.BlockCipher;
var C_algo = C.algo;
// Lookup tables
var SBOX = [];
var INV_SBOX = [];
var SUB_MIX_0 = [];
var SUB_MIX_1 = [];
var SUB_MIX_2 = [];
var SUB_MIX_3 = [];
var INV_SUB_MIX_0 = [];
var INV_SUB_MIX_1 = [];
var INV_SUB_MIX_2 = [];
var INV_SUB_MIX_3 = [];
// Compute lookup tables
// Compute double table
var d = [];
for (var i = 0; i < 256; i++) {
if (i < 128) {
d[i] = i << 1;
d[i] = (i << 1) ^ 0x11b;
// Walk GF(2^8)
var x = 0;
var xi = 0;
// Compute sbox
var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4);
sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63;
SBOX[x] = sx;
INV_SBOX[sx] = x;
// Compute multiplication
var x2 = d[x];
var x4 = d[x2];
var x8 = d[x4];
// Compute sub bytes, mix columns tables
var t = (d[sx] * 0x101) ^ (sx * 0x1010100);
SUB_MIX_0[x] = (t << 24) | (t >>> 8);
SUB_MIX_1[x] = (t << 16) | (t >>> 16);
SUB_MIX_2[x] = (t << 8) | (t >>> 24);
SUB_MIX_3[x] = t;
// Compute inv sub bytes, inv mix columns tables
var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100);
INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8);
INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16);
INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24);
INV_SUB_MIX_3[sx] = t;
// Compute next counter
if (!x) {
x = xi = 1;
x = x2 ^ d[d[d[x8 ^ x2]]];
xi ^= d[d[xi]];
}());
// Precomputed Rcon lookup
var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36];
* AES block cipher algorithm.
var AES = C_algo.AES = BlockCipher.extend({
_doReset: function () {
var key = this._key;
var keyWords = key.words;
var keySize = key.sigBytes / 4;
// Compute number of rounds
var nRounds = this._nRounds = keySize + 6
// Compute number of key schedule rows
var ksRows = (nRounds + 1) * 4;
// Compute key schedule
var keySchedule = this._keySchedule = [];
for (var ksRow = 0; ksRow < ksRows; ksRow++) {
if (ksRow < keySize) {
keySchedule[ksRow] = keyWords[ksRow];
var t = keySchedule[ksRow - 1];
if (!(ksRow % keySize)) {
// Rot word
t = (t << 8) | (t >>> 24);
// Sub word
t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff];
// Mix Rcon
t ^= RCON[(ksRow / keySize) | 0] << 24;
} else if (keySize > 6 && ksRow % keySize == 4) {
keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t;
// Compute inv key schedule
var invKeySchedule = this._invKeySchedule = [];
for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) {
var ksRow = ksRows - invKsRow;
if (invKsRow % 4) {
var t = keySchedule[ksRow];
var t = keySchedule[ksRow - 4];
if (invKsRow < 4 || ksRow <= 4) {
invKeySchedule[invKsRow] = t;
invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^
INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]];
encryptBlock: function (M, offset) {
this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX);
decryptBlock: function (M, offset) {
// Swap 2nd and 4th rows
var t = M[offset + 1];
M[offset + 1] = M[offset + 3];
M[offset + 3] = t;
this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX);
// Inv swap 2nd and 4th rows
_doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) {
// Shortcut
var nRounds = this._nRounds;
// Get input, add round key
var s0 = M[offset] ^ keySchedule[0];
var s1 = M[offset + 1] ^ keySchedule[1];
var s2 = M[offset + 2] ^ keySchedule[2];
var s3 = M[offset + 3] ^ keySchedule[3];
// Key schedule row counter
var ksRow = 4;
// Rounds
for (var round = 1; round < nRounds; round++) {
// Shift rows, sub bytes, mix columns, add round key
var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++];
var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++];
var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++];
var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++];
// Update state
s0 = t0;
s1 = t1;
s2 = t2;
s3 = t3;
// Shift rows, sub bytes, add round key
var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++];
var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++];
var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++];
var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++];
// Set output
M[offset] = t0;
M[offset + 1] = t1;
M[offset + 2] = t2;
M[offset + 3] = t3;
keySize: 256/32
* Shortcut functions to the cipher's object interface.
* @example
* var ciphertext = CryptoJS.AES.encrypt(message, key, cfg);
* var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg);
C.AES = BlockCipher._createHelper(AES);
return CryptoJS.AES;
},{"./cipher-core":51,"./core":52,"./enc-base64":53,"./evpkdf":55,"./md5":60}],51:[function(require,module,exports){
;(function (root, factory) {
module.exports = exports = factory(require("./core"));
define(["./core"], factory);
* Cipher core components.
CryptoJS.lib.Cipher || (function (undefined) {
var Base = C_lib.Base;
var WordArray = C_lib.WordArray;
var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm;
var C_enc = C.enc;
var Utf8 = C_enc.Utf8;
var Base64 = C_enc.Base64;
var EvpKDF = C_algo.EvpKDF;
* Abstract base cipher template.
* @property {number} keySize This cipher's key size. Default: 4 (128 bits)
* @property {number} ivSize This cipher's IV size. Default: 4 (128 bits)
* @property {number} _ENC_XFORM_MODE A constant representing encryption mode.
* @property {number} _DEC_XFORM_MODE A constant representing decryption mode.
var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({
* Configuration options.
* @property {WordArray} iv The IV to use for this operation.
cfg: Base.extend(),
* Creates this cipher in encryption mode.
* @param {WordArray} key The key.
* @param {Object} cfg (Optional) The configuration options to use for this operation.
* @return {Cipher} A cipher instance.
* @static
* var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray });
createEncryptor: function (key, cfg) {
return this.create(this._ENC_XFORM_MODE, key, cfg);
* Creates this cipher in decryption mode.
* var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray });
createDecryptor: function (key, cfg) {
return this.create(this._DEC_XFORM_MODE, key, cfg);
* Initializes a newly created cipher.
* @param {number} xformMode Either the encryption or decryption transormation mode constant.
* var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray });
init: function (xformMode, key, cfg) {
// Apply config defaults
this.cfg = this.cfg.extend(cfg);
// Store transform mode and key
this._xformMode = xformMode;
this._key = key;
// Set initial values
this.reset();
* Resets this cipher to its initial state.
* cipher.reset();
reset: function () {
// Reset data buffer
BufferedBlockAlgorithm.reset.call(this);
// Perform concrete-cipher logic
this._doReset();
* Adds data to be encrypted or decrypted.
* @param {WordArray|string} dataUpdate The data to encrypt or decrypt.
* @return {WordArray} The data after processing.
* var encrypted = cipher.process('data');
* var encrypted = cipher.process(wordArray);
process: function (dataUpdate) {
// Append
this._append(dataUpdate);
// Process available blocks
return this._process();
* Finalizes the encryption or decryption process.
* Note that the finalize operation is effectively a destructive, read-once operation.
* @param {WordArray|string} dataUpdate The final data to encrypt or decrypt.
* @return {WordArray} The data after final processing.
* var encrypted = cipher.finalize();
* var encrypted = cipher.finalize('data');
* var encrypted = cipher.finalize(wordArray);
finalize: function (dataUpdate) {
// Final data update
if (dataUpdate) {
var finalProcessedData = this._doFinalize();
return finalProcessedData;
keySize: 128/32,
ivSize: 128/32,
_ENC_XFORM_MODE: 1,
_DEC_XFORM_MODE: 2,
* Creates shortcut functions to a cipher's object interface.
* @param {Cipher} cipher The cipher to create a helper for.
* @return {Object} An object with encrypt and decrypt shortcut functions.
* var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES);
_createHelper: (function () {
function selectCipherStrategy(key) {
if (typeof key == 'string') {
return PasswordBasedCipher;
return SerializableCipher;
return function (cipher) {
encrypt: function (message, key, cfg) {
return selectCipherStrategy(key).encrypt(cipher, message, key, cfg);
decrypt: function (ciphertext, key, cfg) {
return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg);
}())
* Abstract base stream cipher template.
* @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits)
var StreamCipher = C_lib.StreamCipher = Cipher.extend({
_doFinalize: function () {
// Process partial blocks
var finalProcessedBlocks = this._process(!!'flush');
return finalProcessedBlocks;
blockSize: 1
* Mode namespace.
var C_mode = C.mode = {};
* Abstract base block cipher mode template.
var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({
* Creates this mode for encryption.
* @param {Cipher} cipher A block cipher instance.
* @param {Array} iv The IV words.
* var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words);
createEncryptor: function (cipher, iv) {
return this.Encryptor.create(cipher, iv);
* Creates this mode for decryption.
* var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words);
createDecryptor: function (cipher, iv) {
return this.Decryptor.create(cipher, iv);
* Initializes a newly created mode.
* var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words);
init: function (cipher, iv) {
this._cipher = cipher;
this._iv = iv;
* Cipher Block Chaining mode.
var CBC = C_mode.CBC = (function () {
* Abstract base CBC mode.
var CBC = BlockCipherMode.extend();
* CBC encryptor.
CBC.Encryptor = CBC.extend({
* Processes the data block at offset.
* @param {Array} words The data words to operate on.
* @param {number} offset The offset where the block starts.
* mode.processBlock(data.words, offset);
processBlock: function (words, offset) {
var cipher = this._cipher;
var blockSize = cipher.blockSize;
// XOR and encrypt
xorBlock.call(this, words, offset, blockSize);
cipher.encryptBlock(words, offset);
// Remember this block to use with next block
this._prevBlock = words.slice(offset, offset + blockSize);
* CBC decryptor.
CBC.Decryptor = CBC.extend({
var thisBlock = words.slice(offset, offset + blockSize);
// Decrypt and XOR
cipher.decryptBlock(words, offset);
// This block becomes the previous block
this._prevBlock = thisBlock;
function xorBlock(words, offset, blockSize) {
var iv = this._iv;
// Choose mixing block
if (iv) {
var block = iv;
// Remove IV for subsequent blocks
this._iv = undefined;
var block = this._prevBlock;
// XOR blocks
for (var i = 0; i < blockSize; i++) {
words[offset + i] ^= block[i];
return CBC;
* Padding namespace.
var C_pad = C.pad = {};
* PKCS #5/7 padding strategy.
var Pkcs7 = C_pad.Pkcs7 = {
* Pads data using the algorithm defined in PKCS #5/7.
* @param {WordArray} data The data to pad.
* @param {number} blockSize The multiple that the data should be padded to.
* CryptoJS.pad.Pkcs7.pad(wordArray, 4);
pad: function (data, blockSize) {
var blockSizeBytes = blockSize * 4;
// Count padding bytes
var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes;
// Create padding word
var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes;
// Create padding
var paddingWords = [];
for (var i = 0; i < nPaddingBytes; i += 4) {
paddingWords.push(paddingWord);
var padding = WordArray.create(paddingWords, nPaddingBytes);
// Add padding
data.concat(padding);
* Unpads data that had been padded using the algorithm defined in PKCS #5/7.
* @param {WordArray} data The data to unpad.
* CryptoJS.pad.Pkcs7.unpad(wordArray);
unpad: function (data) {
// Get number of padding bytes from last byte
var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff;
// Remove padding
data.sigBytes -= nPaddingBytes;
* Abstract base block cipher template.
* @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits)
var BlockCipher = C_lib.BlockCipher = Cipher.extend({
* @property {Mode} mode The block mode to use. Default: CBC
* @property {Padding} padding The padding strategy to use. Default: Pkcs7
cfg: Cipher.cfg.extend({
mode: CBC,
padding: Pkcs7
// Reset cipher
Cipher.reset.call(this);
var cfg = this.cfg;
var iv = cfg.iv;
var mode = cfg.mode;
// Reset block mode
if (this._xformMode == this._ENC_XFORM_MODE) {
var modeCreator = mode.createEncryptor;
} else /* if (this._xformMode == this._DEC_XFORM_MODE) */ {
var modeCreator = mode.createDecryptor;
// Keep at least one block in the buffer for unpadding
this._minBufferSize = 1;
this._mode = modeCreator.call(mode, this, iv && iv.words);
_doProcessBlock: function (words, offset) {
this._mode.processBlock(words, offset);
var padding = this.cfg.padding;
// Finalize
// Pad data
padding.pad(this._data, this.blockSize);
// Process final blocks
// Unpad data
padding.unpad(finalProcessedBlocks);
blockSize: 128/32
* A collection of cipher parameters.
* @property {WordArray} ciphertext The raw ciphertext.
* @property {WordArray} key The key to this ciphertext.
* @property {WordArray} iv The IV used in the ciphering operation.
* @property {WordArray} salt The salt used with a key derivation function.
* @property {Cipher} algorithm The cipher algorithm.
* @property {Mode} mode The block mode used in the ciphering operation.
* @property {Padding} padding The padding scheme used in the ciphering operation.
* @property {number} blockSize The block size of the cipher.
* @property {Format} formatter The default formatting strategy to convert this cipher params object to a string.
var CipherParams = C_lib.CipherParams = Base.extend({
* Initializes a newly created cipher params object.
* @param {Object} cipherParams An object with any of the possible cipher parameters.
* var cipherParams = CryptoJS.lib.CipherParams.create({
* ciphertext: ciphertextWordArray,
* key: keyWordArray,
* iv: ivWordArray,
* salt: saltWordArray,
* algorithm: CryptoJS.algo.AES,
* mode: CryptoJS.mode.CBC,
* padding: CryptoJS.pad.PKCS7,
* blockSize: 4,
* formatter: CryptoJS.format.OpenSSL
* });
init: function (cipherParams) {
this.mixIn(cipherParams);
* Converts this cipher params object to a string.
* @param {Format} formatter (Optional) The formatting strategy to use.
* @return {string} The stringified cipher params.
* @throws Error If neither the formatter nor the default formatter is set.
* var string = cipherParams + '';
* var string = cipherParams.toString();
* var string = cipherParams.toString(CryptoJS.format.OpenSSL);
toString: function (formatter) {
return (formatter || this.formatter).stringify(this);
* Format namespace.
var C_format = C.format = {};
* OpenSSL formatting strategy.
var OpenSSLFormatter = C_format.OpenSSL = {
* Converts a cipher params object to an OpenSSL-compatible string.
* @param {CipherParams} cipherParams The cipher params object.
* @return {string} The OpenSSL-compatible string.
* var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams);
stringify: function (cipherParams) {
var ciphertext = cipherParams.ciphertext;
var salt = cipherParams.salt;
// Format
if (salt) {
var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext);
var wordArray = ciphertext;
return wordArray.toString(Base64);
* Converts an OpenSSL-compatible string to a cipher params object.
* @param {string} openSSLStr The OpenSSL-compatible string.
* @return {CipherParams} The cipher params object.
* var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString);
parse: function (openSSLStr) {
// Parse base64
var ciphertext = Base64.parse(openSSLStr);
var ciphertextWords = ciphertext.words;
// Test for salt
if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) {
// Extract salt
var salt = WordArray.create(ciphertextWords.slice(2, 4));
// Remove salt from ciphertext
ciphertextWords.splice(0, 4);
ciphertext.sigBytes -= 16;
return CipherParams.create({ ciphertext: ciphertext, salt: salt });
* A cipher wrapper that returns ciphertext as a serializable cipher params object.
var SerializableCipher = C_lib.SerializableCipher = Base.extend({
* @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL
cfg: Base.extend({
format: OpenSSLFormatter
* Encrypts a message.
* @param {Cipher} cipher The cipher algorithm to use.
* @param {WordArray|string} message The message to encrypt.
* @return {CipherParams} A cipher params object.
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key);
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv });
* var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL });
encrypt: function (cipher, message, key, cfg) {
cfg = this.cfg.extend(cfg);
// Encrypt
var encryptor = cipher.createEncryptor(key, cfg);
var ciphertext = encryptor.finalize(message);
var cipherCfg = encryptor.cfg;
// Create and return serializable cipher params
return CipherParams.create({
ciphertext: ciphertext,
key: key,
iv: cipherCfg.iv,
algorithm: cipher,
mode: cipherCfg.mode,
padding: cipherCfg.padding,
blockSize: cipher.blockSize,
formatter: cfg.format
* Decrypts serialized ciphertext.
* @param {CipherParams|string} ciphertext The ciphertext to decrypt.
* @return {WordArray} The plaintext.
* var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL });
* var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL });
decrypt: function (cipher, ciphertext, key, cfg) {
// Convert string to CipherParams
ciphertext = this._parse(ciphertext, cfg.format);
// Decrypt
var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext);
return plaintext;
* Converts serialized ciphertext to CipherParams,
* else assumed CipherParams already and returns ciphertext unchanged.
* @param {CipherParams|string} ciphertext The ciphertext.
* @param {Formatter} format The formatting strategy to use to parse serialized ciphertext.
* @return {CipherParams} The unserialized ciphertext.
* var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format);
_parse: function (ciphertext, format) {
if (typeof ciphertext == 'string') {
return format.parse(ciphertext, this);
return ciphertext;
* Key derivation function namespace.
var C_kdf = C.kdf = {};
* OpenSSL key derivation function.
var OpenSSLKdf = C_kdf.OpenSSL = {
* Derives a key and IV from a password.
* @param {string} password The password to derive from.
* @param {number} keySize The size in words of the key to generate.
* @param {number} ivSize The size in words of the IV to generate.
* @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly.
* @return {CipherParams} A cipher params object with the key, IV, and salt.
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32);
* var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt');
execute: function (password, keySize, ivSize, salt) {
// Generate random salt
if (!salt) {
salt = WordArray.random(64/8);
// Derive key and IV
var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt);
// Separate key and IV
var iv = WordArray.create(key.words.slice(keySize), ivSize * 4);
key.sigBytes = keySize * 4;
// Return params
return CipherParams.create({ key: key, iv: iv, salt: salt });
* A serializable cipher wrapper that derives the key from a password,
* and returns ciphertext as a serializable cipher params object.
var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({
* @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL
cfg: SerializableCipher.cfg.extend({
kdf: OpenSSLKdf
* Encrypts a message using a password.
* @param {string} password The password.
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password');
* var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL });
encrypt: function (cipher, message, password, cfg) {
// Derive key and other params
var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize);
// Add IV to config
cfg.iv = derivedParams.iv;
var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg);
// Mix in derived params
ciphertext.mixIn(derivedParams);
* Decrypts serialized ciphertext using a password.
* var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL });
* var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL });
decrypt: function (cipher, ciphertext, password, cfg) {
var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt);
var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg);
},{"./core":52}],52:[function(require,module,exports){
module.exports = exports = factory();
define([], factory);
root.CryptoJS = factory();
}(this, function () {
* CryptoJS core components.
var CryptoJS = CryptoJS || (function (Math, undefined) {
* CryptoJS namespace.
var C = {};
* Library namespace.
var C_lib = C.lib = {};
* Base object for prototypal inheritance.
var Base = C_lib.Base = (function () {
function F() {}
* Creates a new object that inherits from this object.
* @param {Object} overrides Properties to copy into the new object.
* @return {Object} The new object.
* var MyType = CryptoJS.lib.Base.extend({
* field: 'value',
* method: function () {
* }
extend: function (overrides) {
// Spawn
F.prototype = this;
var subtype = new F();
// Augment
if (overrides) {
subtype.mixIn(overrides);
// Create default initializer
if (!subtype.hasOwnProperty('init')) {
subtype.init = function () {
subtype.$super.init.apply(this, arguments);
// Initializer's prototype is the subtype object
subtype.init.prototype = subtype;
// Reference supertype
subtype.$super = this;
return subtype;
* Extends this object and runs the init method.
* Arguments to create() will be passed to init().
* var instance = MyType.create();
create: function () {
var instance = this.extend();
instance.init.apply(instance, arguments);
* Initializes a newly created object.
* Override this method to add some logic when your objects are created.
* init: function () {
* // ...
init: function () {
* Copies properties into this object.
* @param {Object} properties The properties to mix in.
* MyType.mixIn({
* field: 'value'
mixIn: function (properties) {
for (var propertyName in properties) {
if (properties.hasOwnProperty(propertyName)) {
this[propertyName] = properties[propertyName];
// IE won't copy toString using the loop above
if (properties.hasOwnProperty('toString')) {
this.toString = properties.toString;
* Creates a copy of this object.
* @return {Object} The clone.
* var clone = instance.clone();
clone: function () {
return this.init.prototype.extend(this);
* An array of 32-bit words.
* @property {Array} words The array of 32-bit words.
* @property {number} sigBytes The number of significant bytes in this word array.
var WordArray = C_lib.WordArray = Base.extend({
* Initializes a newly created word array.
* @param {Array} words (Optional) An array of 32-bit words.
* @param {number} sigBytes (Optional) The number of significant bytes in the words.
* var wordArray = CryptoJS.lib.WordArray.create();
* var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]);
* var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6);
init: function (words, sigBytes) {
words = this.words = words || [];
if (sigBytes != undefined) {
this.sigBytes = sigBytes;
this.sigBytes = words.length * 4;
* Converts this word array to a string.
* @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex
* @return {string} The stringified word array.
* var string = wordArray + '';
* var string = wordArray.toString();
* var string = wordArray.toString(CryptoJS.enc.Utf8);
toString: function (encoder) {
return (encoder || Hex).stringify(this);
* Concatenates a word array to this word array.
* @param {WordArray} wordArray The word array to append.
* @return {WordArray} This word array.
* wordArray1.concat(wordArray2);
concat: function (wordArray) {
var thisWords = this.words;
var thatWords = wordArray.words;
var thisSigBytes = this.sigBytes;
var thatSigBytes = wordArray.sigBytes;
// Clamp excess bits
this.clamp();
// Concat
if (thisSigBytes % 4) {
// Copy one byte at a time
for (var i = 0; i < thatSigBytes; i++) {
var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8);
// Copy one word at a time
for (var i = 0; i < thatSigBytes; i += 4) {
thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2];
this.sigBytes += thatSigBytes;
// Chainable
* Removes insignificant bits.
* wordArray.clamp();
clamp: function () {
var words = this.words;
var sigBytes = this.sigBytes;
// Clamp
words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8);
words.length = Math.ceil(sigBytes / 4);
* Creates a copy of this word array.
* @return {WordArray} The clone.
* var clone = wordArray.clone();
var clone = Base.clone.call(this);
clone.words = this.words.slice(0);
return clone;
* Creates a word array filled with random bytes.
* @param {number} nBytes The number of random bytes to generate.
* @return {WordArray} The random word array.
* var wordArray = CryptoJS.lib.WordArray.random(16);
random: function (nBytes) {
var words = [];
var r = (function (m_w) {
var m_w = m_w;
var m_z = 0x3ade68b1;
var mask = 0xffffffff;
return function () {
m_z = (0x9069 * (m_z & 0xFFFF) + (m_z >> 0x10)) & mask;
m_w = (0x4650 * (m_w & 0xFFFF) + (m_w >> 0x10)) & mask;
var result = ((m_z << 0x10) + m_w) & mask;
result /= 0x100000000;
result += 0.5;
return result * (Math.random() > .5 ? 1 : -1);
for (var i = 0, rcache; i < nBytes; i += 4) {
var _r = r((rcache || Math.random()) * 0x100000000);
rcache = _r() * 0x3ade67b7;
words.push((_r() * 0x100000000) | 0);
return new WordArray.init(words, nBytes);
* Encoder namespace.
var C_enc = C.enc = {};
* Hex encoding strategy.
var Hex = C_enc.Hex = {
* Converts a word array to a hex string.
* @param {WordArray} wordArray The word array.
* @return {string} The hex string.
* var hexString = CryptoJS.enc.Hex.stringify(wordArray);
stringify: function (wordArray) {
var words = wordArray.words;
var sigBytes = wordArray.sigBytes;
// Convert
var hexChars = [];
for (var i = 0; i < sigBytes; i++) {
var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
hexChars.push((bite >>> 4).toString(16));
hexChars.push((bite & 0x0f).toString(16));
return hexChars.join('');
* Converts a hex string to a word array.
* @param {string} hexStr The hex string.
* @return {WordArray} The word array.
* var wordArray = CryptoJS.enc.Hex.parse(hexString);
parse: function (hexStr) {
var hexStrLength = hexStr.length;
for (var i = 0; i < hexStrLength; i += 2) {
words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4);
return new WordArray.init(words, hexStrLength / 2);
* Latin1 encoding strategy.
var Latin1 = C_enc.Latin1 = {
* Converts a word array to a Latin1 string.
* @return {string} The Latin1 string.
* var latin1String = CryptoJS.enc.Latin1.stringify(wordArray);
var latin1Chars = [];
latin1Chars.push(String.fromCharCode(bite));
return latin1Chars.join('');
* Converts a Latin1 string to a word array.
* @param {string} latin1Str The Latin1 string.
* var wordArray = CryptoJS.enc.Latin1.parse(latin1String);
parse: function (latin1Str) {
var latin1StrLength = latin1Str.length;
for (var i = 0; i < latin1StrLength; i++) {
words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8);
return new WordArray.init(words, latin1StrLength);
* UTF-8 encoding strategy.
var Utf8 = C_enc.Utf8 = {
* Converts a word array to a UTF-8 string.
* @return {string} The UTF-8 string.
* var utf8String = CryptoJS.enc.Utf8.stringify(wordArray);
return decodeURIComponent(escape(Latin1.stringify(wordArray)));
throw new Error('Malformed UTF-8 data');
* Converts a UTF-8 string to a word array.
* @param {string} utf8Str The UTF-8 string.
* var wordArray = CryptoJS.enc.Utf8.parse(utf8String);
parse: function (utf8Str) {
return Latin1.parse(unescape(encodeURIComponent(utf8Str)));
* Abstract buffered block algorithm template.
* The property blockSize must be implemented in a concrete subtype.
* @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0
var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({
* Resets this block algorithm's data buffer to its initial state.
* bufferedBlockAlgorithm.reset();
// Initial values
this._data = new WordArray.init();
this._nDataBytes = 0;
* Adds new data to this block algorithm's buffer.
* @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8.
* bufferedBlockAlgorithm._append('data');
* bufferedBlockAlgorithm._append(wordArray);
_append: function (data) {
// Convert string to WordArray, else assume WordArray already
if (typeof data == 'string') {
data = Utf8.parse(data);
this._data.concat(data);
this._nDataBytes += data.sigBytes;
* Processes available data blocks.
* This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype.
* @param {boolean} doFlush Whether all blocks and partial blocks should be processed.
* @return {WordArray} The processed data.
* var processedData = bufferedBlockAlgorithm._process();
* var processedData = bufferedBlockAlgorithm._process(!!'flush');
_process: function (doFlush) {
var data = this._data;
var dataWords = data.words;
var dataSigBytes = data.sigBytes;
var blockSize = this.blockSize;
// Count blocks ready
var nBlocksReady = dataSigBytes / blockSizeBytes;
if (doFlush) {
// Round up to include partial blocks
nBlocksReady = Math.ceil(nBlocksReady);
// Round down to include only full blocks,
// less the number of blocks that must remain in the buffer
nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0);
// Count words ready
var nWordsReady = nBlocksReady * blockSize;
// Count bytes ready
var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes);
// Process blocks
if (nWordsReady) {
for (var offset = 0; offset < nWordsReady; offset += blockSize) {
// Perform concrete-algorithm logic
this._doProcessBlock(dataWords, offset);
// Remove processed words
var processedWords = dataWords.splice(0, nWordsReady);
data.sigBytes -= nBytesReady;
// Return processed words
return new WordArray.init(processedWords, nBytesReady);
* var clone = bufferedBlockAlgorithm.clone();
clone._data = this._data.clone();
_minBufferSize: 0
* Abstract hasher template.
* @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits)
var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({
* Initializes a newly created hasher.
* @param {Object} cfg (Optional) The configuration options to use for this hash computation.
* var hasher = CryptoJS.algo.SHA256.create();
init: function (cfg) {
* Resets this hasher to its initial state.
* hasher.reset();
// Perform concrete-hasher logic
* Updates this hasher with a message.
* @param {WordArray|string} messageUpdate The message to append.
* @return {Hasher} This hasher.
* hasher.update('message');
* hasher.update(wordArray);
update: function (messageUpdate) {
this._append(messageUpdate);
// Update the hash
this._process();
* Finalizes the hash computation.
* @param {WordArray|string} messageUpdate (Optional) A final message update.
* @return {WordArray} The hash.
* var hash = hasher.finalize();
* var hash = hasher.finalize('message');
* var hash = hasher.finalize(wordArray);
finalize: function (messageUpdate) {
// Final message update
if (messageUpdate) {
var hash = this._doFinalize();
return hash;
blockSize: 512/32,
* Creates a shortcut function to a hasher's object interface.
* @param {Hasher} hasher The hasher to create a helper for.
* @return {Function} The shortcut function.
* var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256);
_createHelper: function (hasher) {
return function (message, cfg) {
return new hasher.init(cfg).finalize(message);
* Creates a shortcut function to the HMAC's object interface.
* @param {Hasher} hasher The hasher to use in this HMAC helper.
* var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256);
_createHmacHelper: function (hasher) {
return function (message, key) {
return new C_algo.HMAC.init(hasher, key).finalize(message);
* Algorithm namespace.
var C_algo = C.algo = {};
return C;
}(Math));
return CryptoJS;
},{}],53:[function(require,module,exports){
* Base64 encoding strategy.
var Base64 = C_enc.Base64 = {
* Converts a word array to a Base64 string.
* @return {string} The Base64 string.
* var base64String = CryptoJS.enc.Base64.stringify(wordArray);
var map = this._map;
wordArray.clamp();
var base64Chars = [];
for (var i = 0; i < sigBytes; i += 3) {
var byte1 = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff;
var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff;
var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff;
var triplet = (byte1 << 16) | (byte2 << 8) | byte3;
for (var j = 0; (j < 4) && (i + j * 0.75 < sigBytes); j++) {
base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f));
var paddingChar = map.charAt(64);
if (paddingChar) {
while (base64Chars.length % 4) {
base64Chars.push(paddingChar);
return base64Chars.join('');
* Converts a Base64 string to a word array.
* @param {string} base64Str The Base64 string.
* var wordArray = CryptoJS.enc.Base64.parse(base64String);
parse: function (base64Str) {
var base64StrLength = base64Str.length;
// Ignore padding
var paddingIndex = base64Str.indexOf(paddingChar);
if (paddingIndex != -1) {
base64StrLength = paddingIndex;
var nBytes = 0;
for (var i = 0; i < base64StrLength; i++) {
if (i % 4) {
var bits1 = map.indexOf(base64Str.charAt(i - 1)) << ((i % 4) * 2);
var bits2 = map.indexOf(base64Str.charAt(i)) >>> (6 - (i % 4) * 2);
words[nBytes >>> 2] |= (bits1 | bits2) << (24 - (nBytes % 4) * 8);
nBytes++;
return WordArray.create(words, nBytes);
_map: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/='
return CryptoJS.enc.Base64;
},{"./core":52}],54:[function(require,module,exports){
* UTF-16 BE encoding strategy.
var Utf16BE = C_enc.Utf16 = C_enc.Utf16BE = {
* Converts a word array to a UTF-16 BE string.
* @return {string} The UTF-16 BE string.
* var utf16String = CryptoJS.enc.Utf16.stringify(wordArray);
var utf16Chars = [];
for (var i = 0; i < sigBytes; i += 2) {
var codePoint = (words[i >>> 2] >>> (16 - (i % 4) * 8)) & 0xffff;
utf16Chars.push(String.fromCharCode(codePoint));
return utf16Chars.join('');
* Converts a UTF-16 BE string to a word array.
* @param {string} utf16Str The UTF-16 BE string.
* var wordArray = CryptoJS.enc.Utf16.parse(utf16String);
parse: function (utf16Str) {
var utf16StrLength = utf16Str.length;
for (var i = 0; i < utf16StrLength; i++) {
words[i >>> 1] |= utf16Str.charCodeAt(i) << (16 - (i % 2) * 16);
return WordArray.create(words, utf16StrLength * 2);
* UTF-16 LE encoding strategy.
C_enc.Utf16LE = {
* Converts a word array to a UTF-16 LE string.
* @return {string} The UTF-16 LE string.
* var utf16Str = CryptoJS.enc.Utf16LE.stringify(wordArray);
var codePoint = swapEndian((words[i >>> 2] >>> (16 - (i % 4) * 8)) & 0xffff);
* Converts a UTF-16 LE string to a word array.
* @param {string} utf16Str The UTF-16 LE string.
* var wordArray = CryptoJS.enc.Utf16LE.parse(utf16Str);
words[i >>> 1] |= swapEndian(utf16Str.charCodeAt(i) << (16 - (i % 2) * 16));
function swapEndian(word) {
return ((word << 8) & 0xff00ff00) | ((word >>> 8) & 0x00ff00ff);
return CryptoJS.enc.Utf16;
},{"./core":52}],55:[function(require,module,exports){
module.exports = exports = factory(require("./core"), require("./sha1"), require("./hmac"));
define(["./core", "./sha1", "./hmac"], factory);
var MD5 = C_algo.MD5;
* This key derivation function is meant to conform with EVP_BytesToKey.
* www.openssl.org/docs/crypto/EVP_BytesToKey.html
var EvpKDF = C_algo.EvpKDF = Base.extend({
* @property {number} keySize The key size in words to generate. Default: 4 (128 bits)
* @property {Hasher} hasher The hash algorithm to use. Default: MD5
* @property {number} iterations The number of iterations to perform. Default: 1
hasher: MD5,
iterations: 1
* Initializes a newly created key derivation function.
* @param {Object} cfg (Optional) The configuration options to use for the derivation.
* var kdf = CryptoJS.algo.EvpKDF.create();
* var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8 });
* var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8, iterations: 1000 });
* Derives a key from a password.
* @param {WordArray|string} password The password.
* @param {WordArray|string} salt A salt.
* @return {WordArray} The derived key.
* var key = kdf.compute(password, salt);
compute: function (password, salt) {
// Init hasher
var hasher = cfg.hasher.create();
var derivedKey = WordArray.create();
var derivedKeyWords = derivedKey.words;
var keySize = cfg.keySize;
var iterations = cfg.iterations;
// Generate key
while (derivedKeyWords.length < keySize) {
if (block) {
hasher.update(block);
var block = hasher.update(password).finalize(salt);
hasher.reset();
// Iterations
for (var i = 1; i < iterations; i++) {
block = hasher.finalize(block);
derivedKey.concat(block);
derivedKey.sigBytes = keySize * 4;
return derivedKey;
* @param {Object} cfg (Optional) The configuration options to use for this computation.
* var key = CryptoJS.EvpKDF(password, salt);
* var key = CryptoJS.EvpKDF(password, salt, { keySize: 8 });
* var key = CryptoJS.EvpKDF(password, salt, { keySize: 8, iterations: 1000 });
C.EvpKDF = function (password, salt, cfg) {
return EvpKDF.create(cfg).compute(password, salt);
return CryptoJS.EvpKDF;
},{"./core":52,"./hmac":57,"./sha1":76}],56:[function(require,module,exports){
module.exports = exports = factory(require("./core"), require("./cipher-core"));
define(["./core", "./cipher-core"], factory);
(function (undefined) {
var CipherParams = C_lib.CipherParams;
var Hex = C_enc.Hex;
var C_format = C.format;
var HexFormatter = C_format.Hex = {
* Converts the ciphertext of a cipher params object to a hexadecimally encoded string.
* @return {string} The hexadecimally encoded string.
* var hexString = CryptoJS.format.Hex.stringify(cipherParams);
return cipherParams.ciphertext.toString(Hex);
* Converts a hexadecimally encoded ciphertext string to a cipher params object.
* @param {string} input The hexadecimally encoded string.
* var cipherParams = CryptoJS.format.Hex.parse(hexString);
parse: function (input) {
var ciphertext = Hex.parse(input);
return CipherParams.create({ ciphertext: ciphertext });
return CryptoJS.format.Hex;
},{"./cipher-core":51,"./core":52}],57:[function(require,module,exports){
* HMAC algorithm.
var HMAC = C_algo.HMAC = Base.extend({
* Initializes a newly created HMAC.
* @param {Hasher} hasher The hash algorithm to use.
* @param {WordArray|string} key The secret key.
* var hmacHasher = CryptoJS.algo.HMAC.create(CryptoJS.algo.SHA256, key);
init: function (hasher, key) {
hasher = this._hasher = new hasher.init();
key = Utf8.parse(key);
var hasherBlockSize = hasher.blockSize;
var hasherBlockSizeBytes = hasherBlockSize * 4;
// Allow arbitrary length keys
if (key.sigBytes > hasherBlockSizeBytes) {
key = hasher.finalize(key);
key.clamp();
// Clone key for inner and outer pads
var oKey = this._oKey = key.clone();
var iKey = this._iKey = key.clone();
var oKeyWords = oKey.words;
var iKeyWords = iKey.words;
// XOR keys with pad constants
for (var i = 0; i < hasherBlockSize; i++) {
oKeyWords[i] ^= 0x5c5c5c5c;
iKeyWords[i] ^= 0x36363636;
oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes;
* Resets this HMAC to its initial state.
* hmacHasher.reset();
var hasher = this._hasher;
// Reset
hasher.update(this._iKey);
* Updates this HMAC with a message.
* @return {HMAC} This HMAC instance.
* hmacHasher.update('message');
* hmacHasher.update(wordArray);
this._hasher.update(messageUpdate);
* Finalizes the HMAC computation.
* @return {WordArray} The HMAC.
* var hmac = hmacHasher.finalize();
* var hmac = hmacHasher.finalize('message');
* var hmac = hmacHasher.finalize(wordArray);
// Compute HMAC
var innerHash = hasher.finalize(messageUpdate);
var hmac = hasher.finalize(this._oKey.clone().concat(innerHash));
return hmac;
},{"./core":52}],58:[function(require,module,exports){
module.exports = exports = factory(require("./core"), require("./x64-core"), require("./lib-typedarrays"), require("./enc-utf16"), require("./enc-base64"), require("./md5"), require("./sha1"), require("./sha256"), require("./sha224"), require("./sha512"), require("./sha384"), require("./sha3"), require("./ripemd160"), require("./hmac"), require("./pbkdf2"), require("./evpkdf"), require("./cipher-core"), require("./mode-cfb"), require("./mode-ctr"), require("./mode-ctr-gladman"), require("./mode-ofb"), require("./mode-ecb"), require("./pad-ansix923"), require("./pad-iso10126"), require("./pad-iso97971"), require("./pad-zeropadding"), require("./pad-nopadding"), require("./format-hex"), require("./aes"), require("./tripledes"), require("./rc4"), require("./rabbit"), require("./rabbit-legacy"));
define(["./core", "./x64-core", "./lib-typedarrays", "./enc-utf16", "./enc-base64", "./md5", "./sha1", "./sha256", "./sha224", "./sha512", "./sha384", "./sha3", "./ripemd160", "./hmac", "./pbkdf2", "./evpkdf", "./cipher-core", "./mode-cfb", "./mode-ctr", "./mode-ctr-gladman", "./mode-ofb", "./mode-ecb", "./pad-ansix923", "./pad-iso10126", "./pad-iso97971", "./pad-zeropadding", "./pad-nopadding", "./format-hex", "./aes", "./tripledes", "./rc4", "./rabbit", "./rabbit-legacy"], factory);
root.CryptoJS = factory(root.CryptoJS);
},{"./aes":50,"./cipher-core":51,"./core":52,"./enc-base64":53,"./enc-utf16":54,"./evpkdf":55,"./format-hex":56,"./hmac":57,"./lib-typedarrays":59,"./md5":60,"./mode-cfb":61,"./mode-ctr":63,"./mode-ctr-gladman":62,"./mode-ecb":64,"./mode-ofb":65,"./pad-ansix923":66,"./pad-iso10126":67,"./pad-iso97971":68,"./pad-nopadding":69,"./pad-zeropadding":70,"./pbkdf2":71,"./rabbit":73,"./rabbit-legacy":72,"./rc4":74,"./ripemd160":75,"./sha1":76,"./sha224":77,"./sha256":78,"./sha3":79,"./sha384":80,"./sha512":81,"./tripledes":82,"./x64-core":83}],59:[function(require,module,exports){
// Check if typed arrays are supported
if (typeof ArrayBuffer != 'function') {
// Reference original init
var superInit = WordArray.init;
// Augment WordArray.init to handle typed arrays
var subInit = WordArray.init = function (typedArray) {
// Convert buffers to uint8
if (typedArray instanceof ArrayBuffer) {
typedArray = new Uint8Array(typedArray);
// Convert other array views to uint8
if (
typedArray instanceof Int8Array ||
(typeof Uint8ClampedArray !== "undefined" && typedArray instanceof Uint8ClampedArray) ||
typedArray instanceof Int16Array ||
typedArray instanceof Uint16Array ||
typedArray instanceof Int32Array ||
typedArray instanceof Uint32Array ||
typedArray instanceof Float32Array ||
typedArray instanceof Float64Array
) {
typedArray = new Uint8Array(typedArray.buffer, typedArray.byteOffset, typedArray.byteLength);
// Handle Uint8Array
if (typedArray instanceof Uint8Array) {
var typedArrayByteLength = typedArray.byteLength;
// Extract bytes
for (var i = 0; i < typedArrayByteLength; i++) {
words[i >>> 2] |= typedArray[i] << (24 - (i % 4) * 8);
// Initialize this word array
superInit.call(this, words, typedArrayByteLength);
// Else call normal init
superInit.apply(this, arguments);
subInit.prototype = WordArray;
return CryptoJS.lib.WordArray;
},{"./core":52}],60:[function(require,module,exports){
(function (Math) {
var Hasher = C_lib.Hasher;
// Constants table
var T = [];
// Compute constants
for (var i = 0; i < 64; i++) {
T[i] = (Math.abs(Math.sin(i + 1)) * 0x100000000) | 0;
* MD5 hash algorithm.
var MD5 = C_algo.MD5 = Hasher.extend({
this._hash = new WordArray.init([
0x67452301, 0xefcdab89,
0x98badcfe, 0x10325476
_doProcessBlock: function (M, offset) {
// Swap endian
for (var i = 0; i < 16; i++) {
var offset_i = offset + i;
var M_offset_i = M[offset_i];
M[offset_i] = (
(((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) |
(((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00)
);
var H = this._hash.words;
var M_offset_0 = M[offset + 0];
var M_offset_1 = M[offset + 1];
var M_offset_2 = M[offset + 2];
var M_offset_3 = M[offset + 3];
var M_offset_4 = M[offset + 4];
var M_offset_5 = M[offset + 5];
var M_offset_6 = M[offset + 6];
var M_offset_7 = M[offset + 7];
var M_offset_8 = M[offset + 8];
var M_offset_9 = M[offset + 9];
var M_offset_10 = M[offset + 10];
var M_offset_11 = M[offset + 11];
var M_offset_12 = M[offset + 12];
var M_offset_13 = M[offset + 13];
var M_offset_14 = M[offset + 14];
var M_offset_15 = M[offset + 15];
// Working varialbes
var a = H[0];
var b = H[1];
var c = H[2];
var d = H[3];
// Computation
a = FF(a, b, c, d, M_offset_0, 7, T[0]);
d = FF(d, a, b, c, M_offset_1, 12, T[1]);
c = FF(c, d, a, b, M_offset_2, 17, T[2]);
b = FF(b, c, d, a, M_offset_3, 22, T[3]);
a = FF(a, b, c, d, M_offset_4, 7, T[4]);
d = FF(d, a, b, c, M_offset_5, 12, T[5]);
c = FF(c, d, a, b, M_offset_6, 17, T[6]);
b = FF(b, c, d, a, M_offset_7, 22, T[7]);
a = FF(a, b, c, d, M_offset_8, 7, T[8]);
d = FF(d, a, b, c, M_offset_9, 12, T[9]);
c = FF(c, d, a, b, M_offset_10, 17, T[10]);
b = FF(b, c, d, a, M_offset_11, 22, T[11]);
a = FF(a, b, c, d, M_offset_12, 7, T[12]);
d = FF(d, a, b, c, M_offset_13, 12, T[13]);
c = FF(c, d, a, b, M_offset_14, 17, T[14]);
b = FF(b, c, d, a, M_offset_15, 22, T[15]);
a = GG(a, b, c, d, M_offset_1, 5, T[16]);
d = GG(d, a, b, c, M_offset_6, 9, T[17]);
c = GG(c, d, a, b, M_offset_11, 14, T[18]);
b = GG(b, c, d, a, M_offset_0, 20, T[19]);
a = GG(a, b, c, d, M_offset_5, 5, T[20]);
d = GG(d, a, b, c, M_offset_10, 9, T[21]);
c = GG(c, d, a, b, M_offset_15, 14, T[22]);
b = GG(b, c, d, a, M_offset_4, 20, T[23]);
a = GG(a, b, c, d, M_offset_9, 5, T[24]);
d = GG(d, a, b, c, M_offset_14, 9, T[25]);
c = GG(c, d, a, b, M_offset_3, 14, T[26]);
b = GG(b, c, d, a, M_offset_8, 20, T[27]);
a = GG(a, b, c, d, M_offset_13, 5, T[28]);
d = GG(d, a, b, c, M_offset_2, 9, T[29]);
c = GG(c, d, a, b, M_offset_7, 14, T[30]);
b = GG(b, c, d, a, M_offset_12, 20, T[31]);
a = HH(a, b, c, d, M_offset_5, 4, T[32]);
d = HH(d, a, b, c, M_offset_8, 11, T[33]);
c = HH(c, d, a, b, M_offset_11, 16, T[34]);
b = HH(b, c, d, a, M_offset_14, 23, T[35]);
a = HH(a, b, c, d, M_offset_1, 4, T[36]);
d = HH(d, a, b, c, M_offset_4, 11, T[37]);
c = HH(c, d, a, b, M_offset_7, 16, T[38]);
b = HH(b, c, d, a, M_offset_10, 23, T[39]);
a = HH(a, b, c, d, M_offset_13, 4, T[40]);
d = HH(d, a, b, c, M_offset_0, 11, T[41]);
c = HH(c, d, a, b, M_offset_3, 16, T[42]);
b = HH(b, c, d, a, M_offset_6, 23, T[43]);
a = HH(a, b, c, d, M_offset_9, 4, T[44]);
d = HH(d, a, b, c, M_offset_12, 11, T[45]);
c = HH(c, d, a, b, M_offset_15, 16, T[46]);
b = HH(b, c, d, a, M_offset_2, 23, T[47]);
a = II(a, b, c, d, M_offset_0, 6, T[48]);
d = II(d, a, b, c, M_offset_7, 10, T[49]);
c = II(c, d, a, b, M_offset_14, 15, T[50]);
b = II(b, c, d, a, M_offset_5, 21, T[51]);
a = II(a, b, c, d, M_offset_12, 6, T[52]);
d = II(d, a, b, c, M_offset_3, 10, T[53]);
c = II(c, d, a, b, M_offset_10, 15, T[54]);
b = II(b, c, d, a, M_offset_1, 21, T[55]);
a = II(a, b, c, d, M_offset_8, 6, T[56]);
d = II(d, a, b, c, M_offset_15, 10, T[57]);
c = II(c, d, a, b, M_offset_6, 15, T[58]);
b = II(b, c, d, a, M_offset_13, 21, T[59]);
a = II(a, b, c, d, M_offset_4, 6, T[60]);
d = II(d, a, b, c, M_offset_11, 10, T[61]);
c = II(c, d, a, b, M_offset_2, 15, T[62]);
b = II(b, c, d, a, M_offset_9, 21, T[63]);
// Intermediate hash value
H[0] = (H[0] + a) | 0;
H[1] = (H[1] + b) | 0;
H[2] = (H[2] + c) | 0;
H[3] = (H[3] + d) | 0;
var nBitsTotal = this._nDataBytes * 8;
var nBitsLeft = data.sigBytes * 8;
dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32);
var nBitsTotalH = Math.floor(nBitsTotal / 0x100000000);
var nBitsTotalL = nBitsTotal;
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = (
(((nBitsTotalH << 8) | (nBitsTotalH >>> 24)) & 0x00ff00ff) |
(((nBitsTotalH << 24) | (nBitsTotalH >>> 8)) & 0xff00ff00)
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = (
(((nBitsTotalL << 8) | (nBitsTotalL >>> 24)) & 0x00ff00ff) |
(((nBitsTotalL << 24) | (nBitsTotalL >>> 8)) & 0xff00ff00)
data.sigBytes = (dataWords.length + 1) * 4;
// Hash final blocks
var hash = this._hash;
var H = hash.words;
for (var i = 0; i < 4; i++) {
var H_i = H[i];
H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) |
(((H_i << 24) | (H_i >>> 8)) & 0xff00ff00);
// Return final computed hash
var clone = Hasher.clone.call(this);
clone._hash = this._hash.clone();
function FF(a, b, c, d, x, s, t) {
var n = a + ((b & c) | (~b & d)) + x + t;
return ((n << s) | (n >>> (32 - s))) + b;
function GG(a, b, c, d, x, s, t) {
var n = a + ((b & d) | (c & ~d)) + x + t;
function HH(a, b, c, d, x, s, t) {
var n = a + (b ^ c ^ d) + x + t;
function II(a, b, c, d, x, s, t) {
var n = a + (c ^ (b | ~d)) + x + t;
* Shortcut function to the hasher's object interface.
* @param {WordArray|string} message The message to hash.
* var hash = CryptoJS.MD5('message');
* var hash = CryptoJS.MD5(wordArray);
C.MD5 = Hasher._createHelper(MD5);
* Shortcut function to the HMAC's object interface.
* var hmac = CryptoJS.HmacMD5(message, key);
C.HmacMD5 = Hasher._createHmacHelper(MD5);
return CryptoJS.MD5;
},{"./core":52}],61:[function(require,module,exports){
* Cipher Feedback block mode.
CryptoJS.mode.CFB = (function () {
var CFB = CryptoJS.lib.BlockCipherMode.extend();
CFB.Encryptor = CFB.extend({
generateKeystreamAndEncrypt.call(this, words, offset, blockSize, cipher);
CFB.Decryptor = CFB.extend({
function generateKeystreamAndEncrypt(words, offset, blockSize, cipher) {
// Generate keystream
var keystream = iv.slice(0);
var keystream = this._prevBlock;
cipher.encryptBlock(keystream, 0);
words[offset + i] ^= keystream[i];
return CFB;
return CryptoJS.mode.CFB;
},{"./cipher-core":51,"./core":52}],62:[function(require,module,exports){
/** @preserve
* Counter block mode compatible with Dr Brian Gladman fileenc.c
* derived from CryptoJS.mode.CTR
* Jan Hruby jhruby.web@gmail.com
CryptoJS.mode.CTRGladman = (function () {
var CTRGladman = CryptoJS.lib.BlockCipherMode.extend();
function incWord(word)
if (((word >> 24) & 0xff) === 0xff) { //overflow
var b1 = (word >> 16)&0xff;
var b2 = (word >> 8)&0xff;
var b3 = word & 0xff;
if (b1 === 0xff) // overflow b1
b1 = 0;
if (b2 === 0xff)
b2 = 0;
if (b3 === 0xff)
b3 = 0;
++b3;
++b2;
++b1;
word = 0;
word += (b1 << 16);
word += (b2 << 8);
word += b3;
word += (0x01 << 24);
return word;
function incCounter(counter)
if ((counter[0] = incWord(counter[0])) === 0)
// encr_data in fileenc.c from Dr Brian Gladman's counts only with DWORD j < 8
counter[1] = incWord(counter[1]);
return counter;
var Encryptor = CTRGladman.Encryptor = CTRGladman.extend({
var cipher = this._cipher
var counter = this._counter;
counter = this._counter = iv.slice(0);
incCounter(counter);
var keystream = counter.slice(0);
CTRGladman.Decryptor = Encryptor;
return CTRGladman;
return CryptoJS.mode.CTRGladman;
},{"./cipher-core":51,"./core":52}],63:[function(require,module,exports){
* Counter block mode.
CryptoJS.mode.CTR = (function () {
var CTR = CryptoJS.lib.BlockCipherMode.extend();
var Encryptor = CTR.Encryptor = CTR.extend({
// Increment counter
counter[blockSize - 1] = (counter[blockSize - 1] + 1) | 0
CTR.Decryptor = Encryptor;
return CTR;
return CryptoJS.mode.CTR;
},{"./cipher-core":51,"./core":52}],64:[function(require,module,exports){
* Electronic Codebook block mode.
CryptoJS.mode.ECB = (function () {
var ECB = CryptoJS.lib.BlockCipherMode.extend();
ECB.Encryptor = ECB.extend({
this._cipher.encryptBlock(words, offset);
ECB.Decryptor = ECB.extend({
this._cipher.decryptBlock(words, offset);
return ECB;
return CryptoJS.mode.ECB;
},{"./cipher-core":51,"./core":52}],65:[function(require,module,exports){
* Output Feedback block mode.
CryptoJS.mode.OFB = (function () {
var OFB = CryptoJS.lib.BlockCipherMode.extend();
var Encryptor = OFB.Encryptor = OFB.extend({
var keystream = this._keystream;
keystream = this._keystream = iv.slice(0);
OFB.Decryptor = Encryptor;
return OFB;
return CryptoJS.mode.OFB;
},{"./cipher-core":51,"./core":52}],66:[function(require,module,exports){
* ANSI X.923 padding strategy.
CryptoJS.pad.AnsiX923 = {
var nPaddingBytes = blockSizeBytes - dataSigBytes % blockSizeBytes;
// Compute last byte position
var lastBytePos = dataSigBytes + nPaddingBytes - 1;
// Pad
data.clamp();
data.words[lastBytePos >>> 2] |= nPaddingBytes << (24 - (lastBytePos % 4) * 8);
data.sigBytes += nPaddingBytes;
return CryptoJS.pad.Ansix923;
},{"./cipher-core":51,"./core":52}],67:[function(require,module,exports){
* ISO 10126 padding strategy.
CryptoJS.pad.Iso10126 = {
data.concat(CryptoJS.lib.WordArray.random(nPaddingBytes - 1)).
concat(CryptoJS.lib.WordArray.create([nPaddingBytes << 24], 1));
return CryptoJS.pad.Iso10126;
},{"./cipher-core":51,"./core":52}],68:[function(require,module,exports){
* ISO/IEC 9797-1 Padding Method 2.
CryptoJS.pad.Iso97971 = {
// Add 0x80 byte
data.concat(CryptoJS.lib.WordArray.create([0x80000000], 1));
// Zero pad the rest
CryptoJS.pad.ZeroPadding.pad(data, blockSize);
// Remove zero padding
CryptoJS.pad.ZeroPadding.unpad(data);
// Remove one more byte -- the 0x80 byte
data.sigBytes--;
return CryptoJS.pad.Iso97971;
},{"./cipher-core":51,"./core":52}],69:[function(require,module,exports){
* A noop padding strategy.
CryptoJS.pad.NoPadding = {
pad: function () {
unpad: function () {
return CryptoJS.pad.NoPadding;
},{"./cipher-core":51,"./core":52}],70:[function(require,module,exports){
* Zero padding strategy.
CryptoJS.pad.ZeroPadding = {
data.sigBytes += blockSizeBytes - ((data.sigBytes % blockSizeBytes) || blockSizeBytes);
// Unpad
var i = data.sigBytes - 1;
while (!((dataWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff)) {
i--;
data.sigBytes = i + 1;
return CryptoJS.pad.ZeroPadding;
},{"./cipher-core":51,"./core":52}],71:[function(require,module,exports){
var SHA1 = C_algo.SHA1;
var HMAC = C_algo.HMAC;
* Password-Based Key Derivation Function 2 algorithm.
var PBKDF2 = C_algo.PBKDF2 = Base.extend({
* @property {Hasher} hasher The hasher to use. Default: SHA1
hasher: SHA1,
* var kdf = CryptoJS.algo.PBKDF2.create();
* var kdf = CryptoJS.algo.PBKDF2.create({ keySize: 8 });
* var kdf = CryptoJS.algo.PBKDF2.create({ keySize: 8, iterations: 1000 });
* Computes the Password-Based Key Derivation Function 2.
// Init HMAC
var hmac = HMAC.create(cfg.hasher, password);
var blockIndex = WordArray.create([0x00000001]);
var blockIndexWords = blockIndex.words;
var block = hmac.update(salt).finalize(blockIndex);
hmac.reset();
var blockWords = block.words;
var blockWordsLength = blockWords.length;
var intermediate = block;
intermediate = hmac.finalize(intermediate);
var intermediateWords = intermediate.words;
// XOR intermediate with block
for (var j = 0; j < blockWordsLength; j++) {
blockWords[j] ^= intermediateWords[j];
blockIndexWords[0]++;
* var key = CryptoJS.PBKDF2(password, salt);
* var key = CryptoJS.PBKDF2(password, salt, { keySize: 8 });
* var key = CryptoJS.PBKDF2(password, salt, { keySize: 8, iterations: 1000 });
C.PBKDF2 = function (password, salt, cfg) {
return PBKDF2.create(cfg).compute(password, salt);
return CryptoJS.PBKDF2;
},{"./core":52,"./hmac":57,"./sha1":76}],72:[function(require,module,exports){
var StreamCipher = C_lib.StreamCipher;
// Reusable objects
var S = [];
var C_ = [];
var G = [];
* Rabbit stream cipher algorithm.
* This is a legacy version that neglected to convert the key to little-endian.
* This error doesn't affect the cipher's security,
* but it does affect its compatibility with other implementations.
var RabbitLegacy = C_algo.RabbitLegacy = StreamCipher.extend({
var K = this._key.words;
var iv = this.cfg.iv;
// Generate initial state values
var X = this._X = [
K[0], (K[3] << 16) | (K[2] >>> 16),
K[1], (K[0] << 16) | (K[3] >>> 16),
K[2], (K[1] << 16) | (K[0] >>> 16),
K[3], (K[2] << 16) | (K[1] >>> 16)
// Generate initial counter values
var C = this._C = [
(K[2] << 16) | (K[2] >>> 16), (K[0] & 0xffff0000) | (K[1] & 0x0000ffff),
(K[3] << 16) | (K[3] >>> 16), (K[1] & 0xffff0000) | (K[2] & 0x0000ffff),
(K[0] << 16) | (K[0] >>> 16), (K[2] & 0xffff0000) | (K[3] & 0x0000ffff),
(K[1] << 16) | (K[1] >>> 16), (K[3] & 0xffff0000) | (K[0] & 0x0000ffff)
// Carry bit
this._b = 0;
// Iterate the system four times
nextState.call(this);
// Modify the counters
for (var i = 0; i < 8; i++) {
C[i] ^= X[(i + 4) & 7];
// IV setup
var IV = iv.words;
var IV_0 = IV[0];
var IV_1 = IV[1];
// Generate four subvectors
var i0 = (((IV_0 << 8) | (IV_0 >>> 24)) & 0x00ff00ff) | (((IV_0 << 24) | (IV_0 >>> 8)) & 0xff00ff00);
var i2 = (((IV_1 << 8) | (IV_1 >>> 24)) & 0x00ff00ff) | (((IV_1 << 24) | (IV_1 >>> 8)) & 0xff00ff00);
var i1 = (i0 >>> 16) | (i2 & 0xffff0000);
var i3 = (i2 << 16) | (i0 & 0x0000ffff);
// Modify counter values
C[0] ^= i0;
C[1] ^= i1;
C[2] ^= i2;
C[3] ^= i3;
C[4] ^= i0;
C[5] ^= i1;
C[6] ^= i2;
C[7] ^= i3;
var X = this._X;
// Iterate the system
// Generate four keystream words
S[0] = X[0] ^ (X[5] >>> 16) ^ (X[3] << 16);
S[1] = X[2] ^ (X[7] >>> 16) ^ (X[5] << 16);
S[2] = X[4] ^ (X[1] >>> 16) ^ (X[7] << 16);
S[3] = X[6] ^ (X[3] >>> 16) ^ (X[1] << 16);
S[i] = (((S[i] << 8) | (S[i] >>> 24)) & 0x00ff00ff) |
(((S[i] << 24) | (S[i] >>> 8)) & 0xff00ff00);
M[offset + i] ^= S[i];
blockSize: 128/32,
ivSize: 64/32
function nextState() {
var C = this._C;
// Save old counter values
C_[i] = C[i];
// Calculate new counter values
C[0] = (C[0] + 0x4d34d34d + this._b) | 0;
C[1] = (C[1] + 0xd34d34d3 + ((C[0] >>> 0) < (C_[0] >>> 0) ? 1 : 0)) | 0;
C[2] = (C[2] + 0x34d34d34 + ((C[1] >>> 0) < (C_[1] >>> 0) ? 1 : 0)) | 0;
C[3] = (C[3] + 0x4d34d34d + ((C[2] >>> 0) < (C_[2] >>> 0) ? 1 : 0)) | 0;
C[4] = (C[4] + 0xd34d34d3 + ((C[3] >>> 0) < (C_[3] >>> 0) ? 1 : 0)) | 0;
C[5] = (C[5] + 0x34d34d34 + ((C[4] >>> 0) < (C_[4] >>> 0) ? 1 : 0)) | 0;
C[6] = (C[6] + 0x4d34d34d + ((C[5] >>> 0) < (C_[5] >>> 0) ? 1 : 0)) | 0;
C[7] = (C[7] + 0xd34d34d3 + ((C[6] >>> 0) < (C_[6] >>> 0) ? 1 : 0)) | 0;
this._b = (C[7] >>> 0) < (C_[7] >>> 0) ? 1 : 0;
// Calculate the g-values
var gx = X[i] + C[i];
// Construct high and low argument for squaring
var ga = gx & 0xffff;
var gb = gx >>> 16;
// Calculate high and low result of squaring
var gh = ((((ga * ga) >>> 17) + ga * gb) >>> 15) + gb * gb;
var gl = (((gx & 0xffff0000) * gx) | 0) + (((gx & 0x0000ffff) * gx) | 0);
// High XOR low
G[i] = gh ^ gl;
// Calculate new state values
X[0] = (G[0] + ((G[7] << 16) | (G[7] >>> 16)) + ((G[6] << 16) | (G[6] >>> 16))) | 0;
X[1] = (G[1] + ((G[0] << 8) | (G[0] >>> 24)) + G[7]) | 0;
X[2] = (G[2] + ((G[1] << 16) | (G[1] >>> 16)) + ((G[0] << 16) | (G[0] >>> 16))) | 0;
X[3] = (G[3] + ((G[2] << 8) | (G[2] >>> 24)) + G[1]) | 0;
X[4] = (G[4] + ((G[3] << 16) | (G[3] >>> 16)) + ((G[2] << 16) | (G[2] >>> 16))) | 0;
X[5] = (G[5] + ((G[4] << 8) | (G[4] >>> 24)) + G[3]) | 0;
X[6] = (G[6] + ((G[5] << 16) | (G[5] >>> 16)) + ((G[4] << 16) | (G[4] >>> 16))) | 0;
X[7] = (G[7] + ((G[6] << 8) | (G[6] >>> 24)) + G[5]) | 0;
* var ciphertext = CryptoJS.RabbitLegacy.encrypt(message, key, cfg);
* var plaintext = CryptoJS.RabbitLegacy.decrypt(ciphertext, key, cfg);
C.RabbitLegacy = StreamCipher._createHelper(RabbitLegacy);
return CryptoJS.RabbitLegacy;
},{"./cipher-core":51,"./core":52,"./enc-base64":53,"./evpkdf":55,"./md5":60}],73:[function(require,module,exports){
* Rabbit stream cipher algorithm
var Rabbit = C_algo.Rabbit = StreamCipher.extend({
K[i] = (((K[i] << 8) | (K[i] >>> 24)) & 0x00ff00ff) |
(((K[i] << 24) | (K[i] >>> 8)) & 0xff00ff00);
* var ciphertext = CryptoJS.Rabbit.encrypt(message, key, cfg);
* var plaintext = CryptoJS.Rabbit.decrypt(ciphertext, key, cfg);
C.Rabbit = StreamCipher._createHelper(Rabbit);
return CryptoJS.Rabbit;
},{"./cipher-core":51,"./core":52,"./enc-base64":53,"./evpkdf":55,"./md5":60}],74:[function(require,module,exports){
* RC4 stream cipher algorithm.
var RC4 = C_algo.RC4 = StreamCipher.extend({
var keySigBytes = key.sigBytes;
// Init sbox
var S = this._S = [];
S[i] = i;
// Key setup
for (var i = 0, j = 0; i < 256; i++) {
var keyByteIndex = i % keySigBytes;
var keyByte = (keyWords[keyByteIndex >>> 2] >>> (24 - (keyByteIndex % 4) * 8)) & 0xff;
j = (j + S[i] + keyByte) % 256;
// Swap
var t = S[i];
S[i] = S[j];
S[j] = t;
// Counters
this._i = this._j = 0;
M[offset] ^= generateKeystreamWord.call(this);
keySize: 256/32,
ivSize: 0
function generateKeystreamWord() {
var S = this._S;
var i = this._i;
var j = this._j;
// Generate keystream word
var keystreamWord = 0;
for (var n = 0; n < 4; n++) {
i = (i + 1) % 256;
j = (j + S[i]) % 256;
keystreamWord |= S[(S[i] + S[j]) % 256] << (24 - n * 8);
// Update counters
this._i = i;
this._j = j;
return keystreamWord;
* var ciphertext = CryptoJS.RC4.encrypt(message, key, cfg);
* var plaintext = CryptoJS.RC4.decrypt(ciphertext, key, cfg);
C.RC4 = StreamCipher._createHelper(RC4);
* Modified RC4 stream cipher algorithm.
var RC4Drop = C_algo.RC4Drop = RC4.extend({
* @property {number} drop The number of keystream words to drop. Default 192
cfg: RC4.cfg.extend({
drop: 192
RC4._doReset.call(this);
// Drop
for (var i = this.cfg.drop; i > 0; i--) {
generateKeystreamWord.call(this);
* var ciphertext = CryptoJS.RC4Drop.encrypt(message, key, cfg);
* var plaintext = CryptoJS.RC4Drop.decrypt(ciphertext, key, cfg);
C.RC4Drop = StreamCipher._createHelper(RC4Drop);
return CryptoJS.RC4;
},{"./cipher-core":51,"./core":52,"./enc-base64":53,"./evpkdf":55,"./md5":60}],75:[function(require,module,exports){
(c) 2012 by Cédric Mesnil. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
var _zl = WordArray.create([
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13]);
var _zr = WordArray.create([
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11]);
var _sl = WordArray.create([
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 ]);
var _sr = WordArray.create([
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 ]);
var _hl = WordArray.create([ 0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E]);
var _hr = WordArray.create([ 0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000]);
* RIPEMD160 hash algorithm.
var RIPEMD160 = C_algo.RIPEMD160 = Hasher.extend({
this._hash = WordArray.create([0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0]);
var hl = _hl.words;
var hr = _hr.words;
var zl = _zl.words;
var zr = _zr.words;
var sl = _sl.words;
var sr = _sr.words;
// Working variables
var al, bl, cl, dl, el;
var ar, br, cr, dr, er;
ar = al = H[0];
br = bl = H[1];
cr = cl = H[2];
dr = dl = H[3];
er = el = H[4];
var t;
for (var i = 0; i < 80; i += 1) {
t = (al + M[offset+zl[i]])|0;
if (i<16){
t += f1(bl,cl,dl) + hl[0];
} else if (i<32) {
t += f2(bl,cl,dl) + hl[1];
} else if (i<48) {
t += f3(bl,cl,dl) + hl[2];
} else if (i<64) {
t += f4(bl,cl,dl) + hl[3];
} else {// if (i<80) {
t += f5(bl,cl,dl) + hl[4];
t = t|0;
t = rotl(t,sl[i]);
t = (t+el)|0;
al = el;
el = dl;
dl = rotl(cl, 10);
cl = bl;
bl = t;
t = (ar + M[offset+zr[i]])|0;
t += f5(br,cr,dr) + hr[0];
t += f4(br,cr,dr) + hr[1];
t += f3(br,cr,dr) + hr[2];
t += f2(br,cr,dr) + hr[3];
t += f1(br,cr,dr) + hr[4];
t = rotl(t,sr[i]) ;
t = (t+er)|0;
ar = er;
er = dr;
dr = rotl(cr, 10);
cr = br;
br = t;
t = (H[1] + cl + dr)|0;
H[1] = (H[2] + dl + er)|0;
H[2] = (H[3] + el + ar)|0;
H[3] = (H[4] + al + br)|0;
H[4] = (H[0] + bl + cr)|0;
H[0] = t;
(((nBitsTotal << 8) | (nBitsTotal >>> 24)) & 0x00ff00ff) |
(((nBitsTotal << 24) | (nBitsTotal >>> 8)) & 0xff00ff00)
for (var i = 0; i < 5; i++) {
function f1(x, y, z) {
return ((x) ^ (y) ^ (z));
function f2(x, y, z) {
return (((x)&(y)) | ((~x)&(z)));
function f3(x, y, z) {
return (((x) | (~(y))) ^ (z));
function f4(x, y, z) {
return (((x) & (z)) | ((y)&(~(z))));
function f5(x, y, z) {
return ((x) ^ ((y) |(~(z))));
function rotl(x,n) {
return (x<<n) | (x>>>(32-n));
* var hash = CryptoJS.RIPEMD160('message');
* var hash = CryptoJS.RIPEMD160(wordArray);
C.RIPEMD160 = Hasher._createHelper(RIPEMD160);
* var hmac = CryptoJS.HmacRIPEMD160(message, key);
C.HmacRIPEMD160 = Hasher._createHmacHelper(RIPEMD160);
return CryptoJS.RIPEMD160;
},{"./core":52}],76:[function(require,module,exports){
// Reusable object
var W = [];
* SHA-1 hash algorithm.
var SHA1 = C_algo.SHA1 = Hasher.extend({
0x98badcfe, 0x10325476,
0xc3d2e1f0
var e = H[4];
for (var i = 0; i < 80; i++) {
if (i < 16) {
W[i] = M[offset + i] | 0;
var n = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16];
W[i] = (n << 1) | (n >>> 31);
var t = ((a << 5) | (a >>> 27)) + e + W[i];
if (i < 20) {
t += ((b & c) | (~b & d)) + 0x5a827999;
} else if (i < 40) {
t += (b ^ c ^ d) + 0x6ed9eba1;
} else if (i < 60) {
t += ((b & c) | (b & d) | (c & d)) - 0x70e44324;
} else /* if (i < 80) */ {
t += (b ^ c ^ d) - 0x359d3e2a;
e = d;
d = c;
c = (b << 30) | (b >>> 2);
b = a;
a = t;
H[4] = (H[4] + e) | 0;
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000);
dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal;
data.sigBytes = dataWords.length * 4;
return this._hash;
* var hash = CryptoJS.SHA1('message');
* var hash = CryptoJS.SHA1(wordArray);
C.SHA1 = Hasher._createHelper(SHA1);
* var hmac = CryptoJS.HmacSHA1(message, key);
C.HmacSHA1 = Hasher._createHmacHelper(SHA1);
return CryptoJS.SHA1;
},{"./core":52}],77:[function(require,module,exports){
module.exports = exports = factory(require("./core"), require("./sha256"));
define(["./core", "./sha256"], factory);
var SHA256 = C_algo.SHA256;
* SHA-224 hash algorithm.
var SHA224 = C_algo.SHA224 = SHA256.extend({
0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
var hash = SHA256._doFinalize.call(this);
hash.sigBytes -= 4;
* var hash = CryptoJS.SHA224('message');
* var hash = CryptoJS.SHA224(wordArray);
C.SHA224 = SHA256._createHelper(SHA224);
* var hmac = CryptoJS.HmacSHA224(message, key);
C.HmacSHA224 = SHA256._createHmacHelper(SHA224);
return CryptoJS.SHA224;
},{"./core":52,"./sha256":78}],78:[function(require,module,exports){
// Initialization and round constants tables
var H = [];
var K = [];
function isPrime(n) {
var sqrtN = Math.sqrt(n);
for (var factor = 2; factor <= sqrtN; factor++) {
if (!(n % factor)) {
function getFractionalBits(n) {
return ((n - (n | 0)) * 0x100000000) | 0;
var n = 2;
var nPrime = 0;
while (nPrime < 64) {
if (isPrime(n)) {
if (nPrime < 8) {
H[nPrime] = getFractionalBits(Math.pow(n, 1 / 2));
K[nPrime] = getFractionalBits(Math.pow(n, 1 / 3));
nPrime++;
n++;
* SHA-256 hash algorithm.
var SHA256 = C_algo.SHA256 = Hasher.extend({
this._hash = new WordArray.init(H.slice(0));
var f = H[5];
var g = H[6];
var h = H[7];
var gamma0x = W[i - 15];
var gamma0 = ((gamma0x << 25) | (gamma0x >>> 7)) ^
((gamma0x << 14) | (gamma0x >>> 18)) ^
(gamma0x >>> 3);
var gamma1x = W[i - 2];
var gamma1 = ((gamma1x << 15) | (gamma1x >>> 17)) ^
((gamma1x << 13) | (gamma1x >>> 19)) ^
(gamma1x >>> 10);
W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16];
var ch = (e & f) ^ (~e & g);
var maj = (a & b) ^ (a & c) ^ (b & c);
var sigma0 = ((a << 30) | (a >>> 2)) ^ ((a << 19) | (a >>> 13)) ^ ((a << 10) | (a >>> 22));
var sigma1 = ((e << 26) | (e >>> 6)) ^ ((e << 21) | (e >>> 11)) ^ ((e << 7) | (e >>> 25));
var t1 = h + sigma1 + ch + K[i] + W[i];
var t2 = sigma0 + maj;
h = g;
g = f;
f = e;
e = (d + t1) | 0;
c = b;
a = (t1 + t2) | 0;
H[5] = (H[5] + f) | 0;
H[6] = (H[6] + g) | 0;
H[7] = (H[7] + h) | 0;
* var hash = CryptoJS.SHA256('message');
* var hash = CryptoJS.SHA256(wordArray);
C.SHA256 = Hasher._createHelper(SHA256);
* var hmac = CryptoJS.HmacSHA256(message, key);
C.HmacSHA256 = Hasher._createHmacHelper(SHA256);
return CryptoJS.SHA256;
},{"./core":52}],79:[function(require,module,exports){
module.exports = exports = factory(require("./core"), require("./x64-core"));
define(["./core", "./x64-core"], factory);
var C_x64 = C.x64;
var X64Word = C_x64.Word;
// Constants tables
var RHO_OFFSETS = [];
var PI_INDEXES = [];
var ROUND_CONSTANTS = [];
// Compute Constants
// Compute rho offset constants
var x = 1, y = 0;
for (var t = 0; t < 24; t++) {
RHO_OFFSETS[x + 5 * y] = ((t + 1) * (t + 2) / 2) % 64;
var newX = y % 5;
var newY = (2 * x + 3 * y) % 5;
x = newX;
y = newY;
// Compute pi index constants
for (var x = 0; x < 5; x++) {
for (var y = 0; y < 5; y++) {
PI_INDEXES[x + 5 * y] = y + ((2 * x + 3 * y) % 5) * 5;
// Compute round constants
var LFSR = 0x01;
for (var i = 0; i < 24; i++) {
var roundConstantMsw = 0;
var roundConstantLsw = 0;
for (var j = 0; j < 7; j++) {
if (LFSR & 0x01) {
var bitPosition = (1 << j) - 1;
if (bitPosition < 32) {
roundConstantLsw ^= 1 << bitPosition;
} else /* if (bitPosition >= 32) */ {
roundConstantMsw ^= 1 << (bitPosition - 32);
// Compute next LFSR
if (LFSR & 0x80) {
// Primitive polynomial over GF(2): x^8 + x^6 + x^5 + x^4 + 1
LFSR = (LFSR << 1) ^ 0x71;
LFSR <<= 1;
ROUND_CONSTANTS[i] = X64Word.create(roundConstantMsw, roundConstantLsw);
// Reusable objects for temporary values
for (var i = 0; i < 25; i++) {
T[i] = X64Word.create();
* SHA-3 hash algorithm.
var SHA3 = C_algo.SHA3 = Hasher.extend({
* @property {number} outputLength
* The desired number of bits in the output hash.
* Only values permitted are: 224, 256, 384, 512.
* Default: 512
cfg: Hasher.cfg.extend({
outputLength: 512
var state = this._state = []
state[i] = new X64Word.init();
this.blockSize = (1600 - 2 * this.cfg.outputLength) / 32;
var state = this._state;
var nBlockSizeLanes = this.blockSize / 2;
// Absorb
for (var i = 0; i < nBlockSizeLanes; i++) {
var M2i = M[offset + 2 * i];
var M2i1 = M[offset + 2 * i + 1];
M2i = (
(((M2i << 8) | (M2i >>> 24)) & 0x00ff00ff) |
(((M2i << 24) | (M2i >>> 8)) & 0xff00ff00)
M2i1 = (
(((M2i1 << 8) | (M2i1 >>> 24)) & 0x00ff00ff) |
(((M2i1 << 24) | (M2i1 >>> 8)) & 0xff00ff00)
// Absorb message into state
var lane = state[i];
lane.high ^= M2i1;
lane.low ^= M2i;
for (var round = 0; round < 24; round++) {
// Theta
// Mix column lanes
var tMsw = 0, tLsw = 0;
var lane = state[x + 5 * y];
tMsw ^= lane.high;
tLsw ^= lane.low;
// Temporary values
var Tx = T[x];
Tx.high = tMsw;
Tx.low = tLsw;
var Tx4 = T[(x + 4) % 5];
var Tx1 = T[(x + 1) % 5];
var Tx1Msw = Tx1.high;
var Tx1Lsw = Tx1.low;
// Mix surrounding columns
var tMsw = Tx4.high ^ ((Tx1Msw << 1) | (Tx1Lsw >>> 31));
var tLsw = Tx4.low ^ ((Tx1Lsw << 1) | (Tx1Msw >>> 31));
lane.high ^= tMsw;
lane.low ^= tLsw;
// Rho Pi
for (var laneIndex = 1; laneIndex < 25; laneIndex++) {
var lane = state[laneIndex];
var laneMsw = lane.high;
var laneLsw = lane.low;
var rhoOffset = RHO_OFFSETS[laneIndex];
// Rotate lanes
if (rhoOffset < 32) {
var tMsw = (laneMsw << rhoOffset) | (laneLsw >>> (32 - rhoOffset));
var tLsw = (laneLsw << rhoOffset) | (laneMsw >>> (32 - rhoOffset));
} else /* if (rhoOffset >= 32) */ {
var tMsw = (laneLsw << (rhoOffset - 32)) | (laneMsw >>> (64 - rhoOffset));
var tLsw = (laneMsw << (rhoOffset - 32)) | (laneLsw >>> (64 - rhoOffset));
// Transpose lanes
var TPiLane = T[PI_INDEXES[laneIndex]];
TPiLane.high = tMsw;
TPiLane.low = tLsw;
// Rho pi at x = y = 0
var T0 = T[0];
var state0 = state[0];
T0.high = state0.high;
T0.low = state0.low;
// Chi
var laneIndex = x + 5 * y;
var TLane = T[laneIndex];
var Tx1Lane = T[((x + 1) % 5) + 5 * y];
var Tx2Lane = T[((x + 2) % 5) + 5 * y];
// Mix rows
lane.high = TLane.high ^ (~Tx1Lane.high & Tx2Lane.high);
lane.low = TLane.low ^ (~Tx1Lane.low & Tx2Lane.low);
// Iota
var lane = state[0];
var roundConstant = ROUND_CONSTANTS[round];
lane.high ^= roundConstant.high;
lane.low ^= roundConstant.low;;
var blockSizeBits = this.blockSize * 32;
dataWords[nBitsLeft >>> 5] |= 0x1 << (24 - nBitsLeft % 32);
dataWords[((Math.ceil((nBitsLeft + 1) / blockSizeBits) * blockSizeBits) >>> 5) - 1] |= 0x80;
var outputLengthBytes = this.cfg.outputLength / 8;
var outputLengthLanes = outputLengthBytes / 8;
// Squeeze
var hashWords = [];
for (var i = 0; i < outputLengthLanes; i++) {
laneMsw = (
(((laneMsw << 8) | (laneMsw >>> 24)) & 0x00ff00ff) |
(((laneMsw << 24) | (laneMsw >>> 8)) & 0xff00ff00)
laneLsw = (
(((laneLsw << 8) | (laneLsw >>> 24)) & 0x00ff00ff) |
(((laneLsw << 24) | (laneLsw >>> 8)) & 0xff00ff00)
// Squeeze state to retrieve hash
hashWords.push(laneLsw);
hashWords.push(laneMsw);
return new WordArray.init(hashWords, outputLengthBytes);
var state = clone._state = this._state.slice(0);
state[i] = state[i].clone();
* var hash = CryptoJS.SHA3('message');
* var hash = CryptoJS.SHA3(wordArray);
C.SHA3 = Hasher._createHelper(SHA3);
* var hmac = CryptoJS.HmacSHA3(message, key);
C.HmacSHA3 = Hasher._createHmacHelper(SHA3);
return CryptoJS.SHA3;
},{"./core":52,"./x64-core":83}],80:[function(require,module,exports){
module.exports = exports = factory(require("./core"), require("./x64-core"), require("./sha512"));
define(["./core", "./x64-core", "./sha512"], factory);
var X64WordArray = C_x64.WordArray;
var SHA512 = C_algo.SHA512;
* SHA-384 hash algorithm.
var SHA384 = C_algo.SHA384 = SHA512.extend({
this._hash = new X64WordArray.init([
new X64Word.init(0xcbbb9d5d, 0xc1059ed8), new X64Word.init(0x629a292a, 0x367cd507),
new X64Word.init(0x9159015a, 0x3070dd17), new X64Word.init(0x152fecd8, 0xf70e5939),
new X64Word.init(0x67332667, 0xffc00b31), new X64Word.init(0x8eb44a87, 0x68581511),
new X64Word.init(0xdb0c2e0d, 0x64f98fa7), new X64Word.init(0x47b5481d, 0xbefa4fa4)
var hash = SHA512._doFinalize.call(this);
hash.sigBytes -= 16;
* var hash = CryptoJS.SHA384('message');
* var hash = CryptoJS.SHA384(wordArray);
C.SHA384 = SHA512._createHelper(SHA384);
* var hmac = CryptoJS.HmacSHA384(message, key);
C.HmacSHA384 = SHA512._createHmacHelper(SHA384);
return CryptoJS.SHA384;
},{"./core":52,"./sha512":81,"./x64-core":83}],81:[function(require,module,exports){
function X64Word_create() {
return X64Word.create.apply(X64Word, arguments);
// Constants
var K = [
X64Word_create(0x428a2f98, 0xd728ae22), X64Word_create(0x71374491, 0x23ef65cd),
X64Word_create(0xb5c0fbcf, 0xec4d3b2f), X64Word_create(0xe9b5dba5, 0x8189dbbc),
X64Word_create(0x3956c25b, 0xf348b538), X64Word_create(0x59f111f1, 0xb605d019),
X64Word_create(0x923f82a4, 0xaf194f9b), X64Word_create(0xab1c5ed5, 0xda6d8118),
X64Word_create(0xd807aa98, 0xa3030242), X64Word_create(0x12835b01, 0x45706fbe),
X64Word_create(0x243185be, 0x4ee4b28c), X64Word_create(0x550c7dc3, 0xd5ffb4e2),
X64Word_create(0x72be5d74, 0xf27b896f), X64Word_create(0x80deb1fe, 0x3b1696b1),
X64Word_create(0x9bdc06a7, 0x25c71235), X64Word_create(0xc19bf174, 0xcf692694),
X64Word_create(0xe49b69c1, 0x9ef14ad2), X64Word_create(0xefbe4786, 0x384f25e3),
X64Word_create(0x0fc19dc6, 0x8b8cd5b5), X64Word_create(0x240ca1cc, 0x77ac9c65),
X64Word_create(0x2de92c6f, 0x592b0275), X64Word_create(0x4a7484aa, 0x6ea6e483),
X64Word_create(0x5cb0a9dc, 0xbd41fbd4), X64Word_create(0x76f988da, 0x831153b5),
X64Word_create(0x983e5152, 0xee66dfab), X64Word_create(0xa831c66d, 0x2db43210),
X64Word_create(0xb00327c8, 0x98fb213f), X64Word_create(0xbf597fc7, 0xbeef0ee4),
X64Word_create(0xc6e00bf3, 0x3da88fc2), X64Word_create(0xd5a79147, 0x930aa725),
X64Word_create(0x06ca6351, 0xe003826f), X64Word_create(0x14292967, 0x0a0e6e70),
X64Word_create(0x27b70a85, 0x46d22ffc), X64Word_create(0x2e1b2138, 0x5c26c926),
X64Word_create(0x4d2c6dfc, 0x5ac42aed), X64Word_create(0x53380d13, 0x9d95b3df),
X64Word_create(0x650a7354, 0x8baf63de), X64Word_create(0x766a0abb, 0x3c77b2a8),
X64Word_create(0x81c2c92e, 0x47edaee6), X64Word_create(0x92722c85, 0x1482353b),
X64Word_create(0xa2bfe8a1, 0x4cf10364), X64Word_create(0xa81a664b, 0xbc423001),
X64Word_create(0xc24b8b70, 0xd0f89791), X64Word_create(0xc76c51a3, 0x0654be30),
X64Word_create(0xd192e819, 0xd6ef5218), X64Word_create(0xd6990624, 0x5565a910),
X64Word_create(0xf40e3585, 0x5771202a), X64Word_create(0x106aa070, 0x32bbd1b8),
X64Word_create(0x19a4c116, 0xb8d2d0c8), X64Word_create(0x1e376c08, 0x5141ab53),
X64Word_create(0x2748774c, 0xdf8eeb99), X64Word_create(0x34b0bcb5, 0xe19b48a8),
X64Word_create(0x391c0cb3, 0xc5c95a63), X64Word_create(0x4ed8aa4a, 0xe3418acb),
X64Word_create(0x5b9cca4f, 0x7763e373), X64Word_create(0x682e6ff3, 0xd6b2b8a3),
X64Word_create(0x748f82ee, 0x5defb2fc), X64Word_create(0x78a5636f, 0x43172f60),
X64Word_create(0x84c87814, 0xa1f0ab72), X64Word_create(0x8cc70208, 0x1a6439ec),
X64Word_create(0x90befffa, 0x23631e28), X64Word_create(0xa4506ceb, 0xde82bde9),
X64Word_create(0xbef9a3f7, 0xb2c67915), X64Word_create(0xc67178f2, 0xe372532b),
X64Word_create(0xca273ece, 0xea26619c), X64Word_create(0xd186b8c7, 0x21c0c207),
X64Word_create(0xeada7dd6, 0xcde0eb1e), X64Word_create(0xf57d4f7f, 0xee6ed178),
X64Word_create(0x06f067aa, 0x72176fba), X64Word_create(0x0a637dc5, 0xa2c898a6),
X64Word_create(0x113f9804, 0xbef90dae), X64Word_create(0x1b710b35, 0x131c471b),
X64Word_create(0x28db77f5, 0x23047d84), X64Word_create(0x32caab7b, 0x40c72493),
X64Word_create(0x3c9ebe0a, 0x15c9bebc), X64Word_create(0x431d67c4, 0x9c100d4c),
X64Word_create(0x4cc5d4be, 0xcb3e42b6), X64Word_create(0x597f299c, 0xfc657e2a),
X64Word_create(0x5fcb6fab, 0x3ad6faec), X64Word_create(0x6c44198c, 0x4a475817)
W[i] = X64Word_create();
* SHA-512 hash algorithm.
var SHA512 = C_algo.SHA512 = Hasher.extend({
new X64Word.init(0x6a09e667, 0xf3bcc908), new X64Word.init(0xbb67ae85, 0x84caa73b),
new X64Word.init(0x3c6ef372, 0xfe94f82b), new X64Word.init(0xa54ff53a, 0x5f1d36f1),
new X64Word.init(0x510e527f, 0xade682d1), new X64Word.init(0x9b05688c, 0x2b3e6c1f),
new X64Word.init(0x1f83d9ab, 0xfb41bd6b), new X64Word.init(0x5be0cd19, 0x137e2179)
var H0 = H[0];
var H1 = H[1];
var H2 = H[2];
var H3 = H[3];
var H4 = H[4];
var H5 = H[5];
var H6 = H[6];
var H7 = H[7];
var H0h = H0.high;
var H0l = H0.low;
var H1h = H1.high;
var H1l = H1.low;
var H2h = H2.high;
var H2l = H2.low;
var H3h = H3.high;
var H3l = H3.low;
var H4h = H4.high;
var H4l = H4.low;
var H5h = H5.high;
var H5l = H5.low;
var H6h = H6.high;
var H6l = H6.low;
var H7h = H7.high;
var H7l = H7.low;
var ah = H0h;
var al = H0l;
var bh = H1h;
var bl = H1l;
var ch = H2h;
var cl = H2l;
var dh = H3h;
var dl = H3l;
var eh = H4h;
var el = H4l;
var fh = H5h;
var fl = H5l;
var gh = H6h;
var gl = H6l;
var hh = H7h;
var hl = H7l;
var Wi = W[i];
// Extend message
var Wih = Wi.high = M[offset + i * 2] | 0;
var Wil = Wi.low = M[offset + i * 2 + 1] | 0;
// Gamma0
var gamma0xh = gamma0x.high;
var gamma0xl = gamma0x.low;
var gamma0h = ((gamma0xh >>> 1) | (gamma0xl << 31)) ^ ((gamma0xh >>> 8) | (gamma0xl << 24)) ^ (gamma0xh >>> 7);
var gamma0l = ((gamma0xl >>> 1) | (gamma0xh << 31)) ^ ((gamma0xl >>> 8) | (gamma0xh << 24)) ^ ((gamma0xl >>> 7) | (gamma0xh << 25));
// Gamma1
var gamma1xh = gamma1x.high;
var gamma1xl = gamma1x.low;
var gamma1h = ((gamma1xh >>> 19) | (gamma1xl << 13)) ^ ((gamma1xh << 3) | (gamma1xl >>> 29)) ^ (gamma1xh >>> 6);
var gamma1l = ((gamma1xl >>> 19) | (gamma1xh << 13)) ^ ((gamma1xl << 3) | (gamma1xh >>> 29)) ^ ((gamma1xl >>> 6) | (gamma1xh << 26));
// W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16]
var Wi7 = W[i - 7];
var Wi7h = Wi7.high;
var Wi7l = Wi7.low;
var Wi16 = W[i - 16];
var Wi16h = Wi16.high;
var Wi16l = Wi16.low;
var Wil = gamma0l + Wi7l;
var Wih = gamma0h + Wi7h + ((Wil >>> 0) < (gamma0l >>> 0) ? 1 : 0);
var Wil = Wil + gamma1l;
var Wih = Wih + gamma1h + ((Wil >>> 0) < (gamma1l >>> 0) ? 1 : 0);
var Wil = Wil + Wi16l;
var Wih = Wih + Wi16h + ((Wil >>> 0) < (Wi16l >>> 0) ? 1 : 0);
Wi.high = Wih;
Wi.low = Wil;
var chh = (eh & fh) ^ (~eh & gh);
var chl = (el & fl) ^ (~el & gl);
var majh = (ah & bh) ^ (ah & ch) ^ (bh & ch);
var majl = (al & bl) ^ (al & cl) ^ (bl & cl);
var sigma0h = ((ah >>> 28) | (al << 4)) ^ ((ah << 30) | (al >>> 2)) ^ ((ah << 25) | (al >>> 7));
var sigma0l = ((al >>> 28) | (ah << 4)) ^ ((al << 30) | (ah >>> 2)) ^ ((al << 25) | (ah >>> 7));
var sigma1h = ((eh >>> 14) | (el << 18)) ^ ((eh >>> 18) | (el << 14)) ^ ((eh << 23) | (el >>> 9));
var sigma1l = ((el >>> 14) | (eh << 18)) ^ ((el >>> 18) | (eh << 14)) ^ ((el << 23) | (eh >>> 9));
// t1 = h + sigma1 + ch + K[i] + W[i]
var Ki = K[i];
var Kih = Ki.high;
var Kil = Ki.low;
var t1l = hl + sigma1l;
var t1h = hh + sigma1h + ((t1l >>> 0) < (hl >>> 0) ? 1 : 0);
var t1l = t1l + chl;
var t1h = t1h + chh + ((t1l >>> 0) < (chl >>> 0) ? 1 : 0);
var t1l = t1l + Kil;
var t1h = t1h + Kih + ((t1l >>> 0) < (Kil >>> 0) ? 1 : 0);
var t1l = t1l + Wil;
var t1h = t1h + Wih + ((t1l >>> 0) < (Wil >>> 0) ? 1 : 0);
// t2 = sigma0 + maj
var t2l = sigma0l + majl;
var t2h = sigma0h + majh + ((t2l >>> 0) < (sigma0l >>> 0) ? 1 : 0);
// Update working variables
hh = gh;
hl = gl;
gh = fh;
gl = fl;
fh = eh;
fl = el;
el = (dl + t1l) | 0;
eh = (dh + t1h + ((el >>> 0) < (dl >>> 0) ? 1 : 0)) | 0;
dh = ch;
dl = cl;
ch = bh;
bh = ah;
bl = al;
al = (t1l + t2l) | 0;
ah = (t1h + t2h + ((al >>> 0) < (t1l >>> 0) ? 1 : 0)) | 0;
H0l = H0.low = (H0l + al);
H0.high = (H0h + ah + ((H0l >>> 0) < (al >>> 0) ? 1 : 0));
H1l = H1.low = (H1l + bl);
H1.high = (H1h + bh + ((H1l >>> 0) < (bl >>> 0) ? 1 : 0));
H2l = H2.low = (H2l + cl);
H2.high = (H2h + ch + ((H2l >>> 0) < (cl >>> 0) ? 1 : 0));
H3l = H3.low = (H3l + dl);
H3.high = (H3h + dh + ((H3l >>> 0) < (dl >>> 0) ? 1 : 0));
H4l = H4.low = (H4l + el);
H4.high = (H4h + eh + ((H4l >>> 0) < (el >>> 0) ? 1 : 0));
H5l = H5.low = (H5l + fl);
H5.high = (H5h + fh + ((H5l >>> 0) < (fl >>> 0) ? 1 : 0));
H6l = H6.low = (H6l + gl);
H6.high = (H6h + gh + ((H6l >>> 0) < (gl >>> 0) ? 1 : 0));
H7l = H7.low = (H7l + hl);
H7.high = (H7h + hh + ((H7l >>> 0) < (hl >>> 0) ? 1 : 0));
dataWords[(((nBitsLeft + 128) >>> 10) << 5) + 30] = Math.floor(nBitsTotal / 0x100000000);
dataWords[(((nBitsLeft + 128) >>> 10) << 5) + 31] = nBitsTotal;
// Convert hash to 32-bit word array before returning
var hash = this._hash.toX32();
blockSize: 1024/32
* var hash = CryptoJS.SHA512('message');
* var hash = CryptoJS.SHA512(wordArray);
C.SHA512 = Hasher._createHelper(SHA512);
* var hmac = CryptoJS.HmacSHA512(message, key);
C.HmacSHA512 = Hasher._createHmacHelper(SHA512);
return CryptoJS.SHA512;
},{"./core":52,"./x64-core":83}],82:[function(require,module,exports){
// Permuted Choice 1 constants
var PC1 = [
57, 49, 41, 33, 25, 17, 9, 1,
58, 50, 42, 34, 26, 18, 10, 2,
59, 51, 43, 35, 27, 19, 11, 3,
60, 52, 44, 36, 63, 55, 47, 39,
31, 23, 15, 7, 62, 54, 46, 38,
30, 22, 14, 6, 61, 53, 45, 37,
29, 21, 13, 5, 28, 20, 12, 4
// Permuted Choice 2 constants
var PC2 = [
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32
// Cumulative bit shift constants
var BIT_SHIFTS = [1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28];
// SBOXes and round permutation constants
var SBOX_P = [
0x0: 0x808200,
0x10000000: 0x8000,
0x20000000: 0x808002,
0x30000000: 0x2,
0x40000000: 0x200,
0x50000000: 0x808202,
0x60000000: 0x800202,
0x70000000: 0x800000,
0x80000000: 0x202,
0x90000000: 0x800200,
0xa0000000: 0x8200,
0xb0000000: 0x808000,
0xc0000000: 0x8002,
0xd0000000: 0x800002,
0xe0000000: 0x0,
0xf0000000: 0x8202,
0x8000000: 0x0,
0x18000000: 0x808202,
0x28000000: 0x8202,
0x38000000: 0x8000,
0x48000000: 0x808200,
0x58000000: 0x200,
0x68000000: 0x808002,
0x78000000: 0x2,
0x88000000: 0x800200,
0x98000000: 0x8200,
0xa8000000: 0x808000,
0xb8000000: 0x800202,
0xc8000000: 0x800002,
0xd8000000: 0x8002,
0xe8000000: 0x202,
0xf8000000: 0x800000,
0x1: 0x8000,
0x10000001: 0x2,
0x20000001: 0x808200,
0x30000001: 0x800000,
0x40000001: 0x808002,
0x50000001: 0x8200,
0x60000001: 0x200,
0x70000001: 0x800202,
0x80000001: 0x808202,
0x90000001: 0x808000,
0xa0000001: 0x800002,
0xb0000001: 0x8202,
0xc0000001: 0x202,
0xd0000001: 0x800200,
0xe0000001: 0x8002,
0xf0000001: 0x0,
0x8000001: 0x808202,
0x18000001: 0x808000,
0x28000001: 0x800000,
0x38000001: 0x200,
0x48000001: 0x8000,
0x58000001: 0x800002,
0x68000001: 0x2,
0x78000001: 0x8202,
0x88000001: 0x8002,
0x98000001: 0x800202,
0xa8000001: 0x202,
0xb8000001: 0x808200,
0xc8000001: 0x800200,
0xd8000001: 0x0,
0xe8000001: 0x8200,
0xf8000001: 0x808002
0x0: 0x40084010,
0x1000000: 0x4000,
0x2000000: 0x80000,
0x3000000: 0x40080010,
0x4000000: 0x40000010,
0x5000000: 0x40084000,
0x6000000: 0x40004000,
0x7000000: 0x10,
0x8000000: 0x84000,
0x9000000: 0x40004010,
0xa000000: 0x40000000,
0xb000000: 0x84010,
0xc000000: 0x80010,
0xd000000: 0x0,
0xe000000: 0x4010,
0xf000000: 0x40080000,
0x800000: 0x40004000,
0x1800000: 0x84010,
0x2800000: 0x10,
0x3800000: 0x40004010,
0x4800000: 0x40084010,
0x5800000: 0x40000000,
0x6800000: 0x80000,
0x7800000: 0x40080010,
0x8800000: 0x80010,
0x9800000: 0x0,
0xa800000: 0x4000,
0xb800000: 0x40080000,
0xc800000: 0x40000010,
0xd800000: 0x84000,
0xe800000: 0x40084000,
0xf800000: 0x4010,
0x10000000: 0x0,
0x11000000: 0x40080010,
0x12000000: 0x40004010,
0x13000000: 0x40084000,
0x14000000: 0x40080000,
0x15000000: 0x10,
0x16000000: 0x84010,
0x17000000: 0x4000,
0x18000000: 0x4010,
0x19000000: 0x80000,
0x1a000000: 0x80010,
0x1b000000: 0x40000010,
0x1c000000: 0x84000,
0x1d000000: 0x40004000,
0x1e000000: 0x40000000,
0x1f000000: 0x40084010,
0x10800000: 0x84010,
0x11800000: 0x80000,
0x12800000: 0x40080000,
0x13800000: 0x4000,
0x14800000: 0x40004000,
0x15800000: 0x40084010,
0x16800000: 0x10,
0x17800000: 0x40000000,
0x18800000: 0x40084000,
0x19800000: 0x40000010,
0x1a800000: 0x40004010,
0x1b800000: 0x80010,
0x1c800000: 0x0,
0x1d800000: 0x4010,
0x1e800000: 0x40080010,
0x1f800000: 0x84000
0x0: 0x104,
0x100000: 0x0,
0x200000: 0x4000100,
0x300000: 0x10104,
0x400000: 0x10004,
0x500000: 0x4000004,
0x600000: 0x4010104,
0x700000: 0x4010000,
0x800000: 0x4000000,
0x900000: 0x4010100,
0xa00000: 0x10100,
0xb00000: 0x4010004,
0xc00000: 0x4000104,
0xd00000: 0x10000,
0xe00000: 0x4,
0xf00000: 0x100,
0x80000: 0x4010100,
0x180000: 0x4010004,
0x280000: 0x0,
0x380000: 0x4000100,
0x480000: 0x4000004,
0x580000: 0x10000,
0x680000: 0x10004,
0x780000: 0x104,
0x880000: 0x4,
0x980000: 0x100,
0xa80000: 0x4010000,
0xb80000: 0x10104,
0xc80000: 0x10100,
0xd80000: 0x4000104,
0xe80000: 0x4010104,
0xf80000: 0x4000000,
0x1000000: 0x4010100,
0x1100000: 0x10004,
0x1200000: 0x10000,
0x1300000: 0x4000100,
0x1400000: 0x100,
0x1500000: 0x4010104,
0x1600000: 0x4000004,
0x1700000: 0x0,
0x1800000: 0x4000104,
0x1900000: 0x4000000,
0x1a00000: 0x4,
0x1b00000: 0x10100,
0x1c00000: 0x4010000,
0x1d00000: 0x104,
0x1e00000: 0x10104,
0x1f00000: 0x4010004,
0x1080000: 0x4000000,
0x1180000: 0x104,
0x1280000: 0x4010100,
0x1380000: 0x0,
0x1480000: 0x10004,
0x1580000: 0x4000100,
0x1680000: 0x100,
0x1780000: 0x4010004,
0x1880000: 0x10000,
0x1980000: 0x4010104,
0x1a80000: 0x10104,
0x1b80000: 0x4000004,
0x1c80000: 0x4000104,
0x1d80000: 0x4010000,
0x1e80000: 0x4,
0x1f80000: 0x10100
0x0: 0x80401000,
0x10000: 0x80001040,
0x20000: 0x401040,
0x30000: 0x80400000,
0x40000: 0x0,
0x50000: 0x401000,
0x60000: 0x80000040,
0x70000: 0x400040,
0x80000: 0x80000000,
0x90000: 0x400000,
0xa0000: 0x40,
0xb0000: 0x80001000,
0xc0000: 0x80400040,
0xd0000: 0x1040,
0xe0000: 0x1000,
0xf0000: 0x80401040,
0x8000: 0x80001040,
0x18000: 0x40,
0x28000: 0x80400040,
0x38000: 0x80001000,
0x48000: 0x401000,
0x58000: 0x80401040,
0x68000: 0x0,
0x78000: 0x80400000,
0x88000: 0x1000,
0x98000: 0x80401000,
0xa8000: 0x400000,
0xb8000: 0x1040,
0xc8000: 0x80000000,
0xd8000: 0x400040,
0xe8000: 0x401040,
0xf8000: 0x80000040,
0x100000: 0x400040,
0x110000: 0x401000,
0x120000: 0x80000040,
0x130000: 0x0,
0x140000: 0x1040,
0x150000: 0x80400040,
0x160000: 0x80401000,
0x170000: 0x80001040,
0x180000: 0x80401040,
0x190000: 0x80000000,
0x1a0000: 0x80400000,
0x1b0000: 0x401040,
0x1c0000: 0x80001000,
0x1d0000: 0x400000,
0x1e0000: 0x40,
0x1f0000: 0x1000,
0x108000: 0x80400000,
0x118000: 0x80401040,
0x128000: 0x0,
0x138000: 0x401000,
0x148000: 0x400040,
0x158000: 0x80000000,
0x168000: 0x80001040,
0x178000: 0x40,
0x188000: 0x80000040,
0x198000: 0x1000,
0x1a8000: 0x80001000,
0x1b8000: 0x80400040,
0x1c8000: 0x1040,
0x1d8000: 0x80401000,
0x1e8000: 0x400000,
0x1f8000: 0x401040
0x0: 0x80,
0x1000: 0x1040000,
0x2000: 0x40000,
0x3000: 0x20000000,
0x4000: 0x20040080,
0x5000: 0x1000080,
0x6000: 0x21000080,
0x7000: 0x40080,
0x8000: 0x1000000,
0x9000: 0x20040000,
0xa000: 0x20000080,
0xb000: 0x21040080,
0xc000: 0x21040000,
0xd000: 0x0,
0xe000: 0x1040080,
0xf000: 0x21000000,
0x800: 0x1040080,
0x1800: 0x21000080,
0x2800: 0x80,
0x3800: 0x1040000,
0x4800: 0x40000,
0x5800: 0x20040080,
0x6800: 0x21040000,
0x7800: 0x20000000,
0x8800: 0x20040000,
0x9800: 0x0,
0xa800: 0x21040080,
0xb800: 0x1000080,
0xc800: 0x20000080,
0xd800: 0x21000000,
0xe800: 0x1000000,
0xf800: 0x40080,
0x10000: 0x40000,
0x11000: 0x80,
0x12000: 0x20000000,
0x13000: 0x21000080,
0x14000: 0x1000080,
0x15000: 0x21040000,
0x16000: 0x20040080,
0x17000: 0x1000000,
0x18000: 0x21040080,
0x19000: 0x21000000,
0x1a000: 0x1040000,
0x1b000: 0x20040000,
0x1c000: 0x40080,
0x1d000: 0x20000080,
0x1e000: 0x0,
0x1f000: 0x1040080,
0x10800: 0x21000080,
0x11800: 0x1000000,
0x12800: 0x1040000,
0x13800: 0x20040080,
0x14800: 0x20000000,
0x15800: 0x1040080,
0x16800: 0x80,
0x17800: 0x21040000,
0x18800: 0x40080,
0x19800: 0x21040080,
0x1a800: 0x0,
0x1b800: 0x21000000,
0x1c800: 0x1000080,
0x1d800: 0x40000,
0x1e800: 0x20040000,
0x1f800: 0x20000080
0x0: 0x10000008,
0x100: 0x2000,
0x200: 0x10200000,
0x300: 0x10202008,
0x400: 0x10002000,
0x500: 0x200000,
0x600: 0x200008,
0x700: 0x10000000,
0x800: 0x0,
0x900: 0x10002008,
0xa00: 0x202000,
0xb00: 0x8,
0xc00: 0x10200008,
0xd00: 0x202008,
0xe00: 0x2008,
0xf00: 0x10202000,
0x80: 0x10200000,
0x180: 0x10202008,
0x280: 0x8,
0x380: 0x200000,
0x480: 0x202008,
0x580: 0x10000008,
0x680: 0x10002000,
0x780: 0x2008,
0x880: 0x200008,
0x980: 0x2000,
0xa80: 0x10002008,
0xb80: 0x10200008,
0xc80: 0x0,
0xd80: 0x10202000,
0xe80: 0x202000,
0xf80: 0x10000000,
0x1000: 0x10002000,
0x1100: 0x10200008,
0x1200: 0x10202008,
0x1300: 0x2008,
0x1400: 0x200000,
0x1500: 0x10000000,
0x1600: 0x10000008,
0x1700: 0x202000,
0x1800: 0x202008,
0x1900: 0x0,
0x1a00: 0x8,
0x1b00: 0x10200000,
0x1c00: 0x2000,
0x1d00: 0x10002008,
0x1e00: 0x10202000,
0x1f00: 0x200008,
0x1080: 0x8,
0x1180: 0x202000,
0x1280: 0x200000,
0x1380: 0x10000008,
0x1480: 0x10002000,
0x1580: 0x2008,
0x1680: 0x10202008,
0x1780: 0x10200000,
0x1880: 0x10202000,
0x1980: 0x10200008,
0x1a80: 0x2000,
0x1b80: 0x202008,
0x1c80: 0x200008,
0x1d80: 0x0,
0x1e80: 0x10000000,
0x1f80: 0x10002008
0x0: 0x100000,
0x10: 0x2000401,
0x20: 0x400,
0x30: 0x100401,
0x40: 0x2100401,
0x50: 0x0,
0x60: 0x1,
0x70: 0x2100001,
0x80: 0x2000400,
0x90: 0x100001,
0xa0: 0x2000001,
0xb0: 0x2100400,
0xc0: 0x2100000,
0xd0: 0x401,
0xe0: 0x100400,
0xf0: 0x2000000,
0x8: 0x2100001,
0x18: 0x0,
0x28: 0x2000401,
0x38: 0x2100400,
0x48: 0x100000,
0x58: 0x2000001,
0x68: 0x2000000,
0x78: 0x401,
0x88: 0x100401,
0x98: 0x2000400,
0xa8: 0x2100000,
0xb8: 0x100001,
0xc8: 0x400,
0xd8: 0x2100401,
0xe8: 0x1,
0xf8: 0x100400,
0x100: 0x2000000,
0x110: 0x100000,
0x120: 0x2000401,
0x130: 0x2100001,
0x140: 0x100001,
0x150: 0x2000400,
0x160: 0x2100400,
0x170: 0x100401,
0x180: 0x401,
0x190: 0x2100401,
0x1a0: 0x100400,
0x1b0: 0x1,
0x1c0: 0x0,
0x1d0: 0x2100000,
0x1e0: 0x2000001,
0x1f0: 0x400,
0x108: 0x100400,
0x118: 0x2000401,
0x128: 0x2100001,
0x138: 0x1,
0x148: 0x2000000,
0x158: 0x100000,
0x168: 0x401,
0x178: 0x2100400,
0x188: 0x2000001,
0x198: 0x2100000,
0x1a8: 0x0,
0x1b8: 0x2100401,
0x1c8: 0x100401,
0x1d8: 0x400,
0x1e8: 0x2000400,
0x1f8: 0x100001
0x0: 0x8000820,
0x1: 0x20000,
0x2: 0x8000000,
0x3: 0x20,
0x4: 0x20020,
0x5: 0x8020820,
0x6: 0x8020800,
0x7: 0x800,
0x8: 0x8020000,
0x9: 0x8000800,
0xa: 0x20800,
0xb: 0x8020020,
0xc: 0x820,
0xd: 0x0,
0xe: 0x8000020,
0xf: 0x20820,
0x80000000: 0x800,
0x80000001: 0x8020820,
0x80000002: 0x8000820,
0x80000003: 0x8000000,
0x80000004: 0x8020000,
0x80000005: 0x20800,
0x80000006: 0x20820,
0x80000007: 0x20,
0x80000008: 0x8000020,
0x80000009: 0x820,
0x8000000a: 0x20020,
0x8000000b: 0x8020800,
0x8000000c: 0x0,
0x8000000d: 0x8020020,
0x8000000e: 0x8000800,
0x8000000f: 0x20000,
0x10: 0x20820,
0x11: 0x8020800,
0x12: 0x20,
0x13: 0x800,
0x14: 0x8000800,
0x15: 0x8000020,
0x16: 0x8020020,
0x17: 0x20000,
0x19: 0x20020,
0x1a: 0x8020000,
0x1b: 0x8000820,
0x1c: 0x8020820,
0x1d: 0x20800,
0x1e: 0x820,
0x1f: 0x8000000,
0x80000010: 0x20000,
0x80000011: 0x800,
0x80000012: 0x8020020,
0x80000013: 0x20820,
0x80000014: 0x20,
0x80000015: 0x8020000,
0x80000016: 0x8000000,
0x80000017: 0x8000820,
0x80000018: 0x8020820,
0x80000019: 0x8000020,
0x8000001a: 0x8000800,
0x8000001b: 0x0,
0x8000001c: 0x20800,
0x8000001d: 0x820,
0x8000001e: 0x20020,
0x8000001f: 0x8020800
// Masks that select the SBOX input
var SBOX_MASK = [
0xf8000001, 0x1f800000, 0x01f80000, 0x001f8000,
0x0001f800, 0x00001f80, 0x000001f8, 0x8000001f
* DES block cipher algorithm.
var DES = C_algo.DES = BlockCipher.extend({
// Select 56 bits according to PC1
var keyBits = [];
for (var i = 0; i < 56; i++) {
var keyBitPos = PC1[i] - 1;
keyBits[i] = (keyWords[keyBitPos >>> 5] >>> (31 - keyBitPos % 32)) & 1;
// Assemble 16 subkeys
var subKeys = this._subKeys = [];
for (var nSubKey = 0; nSubKey < 16; nSubKey++) {
// Create subkey
var subKey = subKeys[nSubKey] = [];
var bitShift = BIT_SHIFTS[nSubKey];
// Select 48 bits according to PC2
// Select from the left 28 key bits
subKey[(i / 6) | 0] |= keyBits[((PC2[i] - 1) + bitShift) % 28] << (31 - i % 6);
// Select from the right 28 key bits
subKey[4 + ((i / 6) | 0)] |= keyBits[28 + (((PC2[i + 24] - 1) + bitShift) % 28)] << (31 - i % 6);
// Since each subkey is applied to an expanded 32-bit input,
// the subkey can be broken into 8 values scaled to 32-bits,
// which allows the key to be used without expansion
subKey[0] = (subKey[0] << 1) | (subKey[0] >>> 31);
for (var i = 1; i < 7; i++) {
subKey[i] = subKey[i] >>> ((i - 1) * 4 + 3);
subKey[7] = (subKey[7] << 5) | (subKey[7] >>> 27);
// Compute inverse subkeys
var invSubKeys = this._invSubKeys = [];
invSubKeys[i] = subKeys[15 - i];
this._doCryptBlock(M, offset, this._subKeys);
this._doCryptBlock(M, offset, this._invSubKeys);
_doCryptBlock: function (M, offset, subKeys) {
// Get input
this._lBlock = M[offset];
this._rBlock = M[offset + 1];
// Initial permutation
exchangeLR.call(this, 4, 0x0f0f0f0f);
exchangeLR.call(this, 16, 0x0000ffff);
exchangeRL.call(this, 2, 0x33333333);
exchangeRL.call(this, 8, 0x00ff00ff);
exchangeLR.call(this, 1, 0x55555555);
for (var round = 0; round < 16; round++) {
var subKey = subKeys[round];
var lBlock = this._lBlock;
var rBlock = this._rBlock;
// Feistel function
var f = 0;
f |= SBOX_P[i][((rBlock ^ subKey[i]) & SBOX_MASK[i]) >>> 0];
this._lBlock = rBlock;
this._rBlock = lBlock ^ f;
// Undo swap from last round
var t = this._lBlock;
this._lBlock = this._rBlock;
this._rBlock = t;
// Final permutation
M[offset] = this._lBlock;
M[offset + 1] = this._rBlock;
keySize: 64/32,
ivSize: 64/32,
blockSize: 64/32
// Swap bits across the left and right words
function exchangeLR(offset, mask) {
var t = ((this._lBlock >>> offset) ^ this._rBlock) & mask;
this._rBlock ^= t;
this._lBlock ^= t << offset;
function exchangeRL(offset, mask) {
var t = ((this._rBlock >>> offset) ^ this._lBlock) & mask;
this._lBlock ^= t;
this._rBlock ^= t << offset;
* var ciphertext = CryptoJS.DES.encrypt(message, key, cfg);
* var plaintext = CryptoJS.DES.decrypt(ciphertext, key, cfg);
C.DES = BlockCipher._createHelper(DES);
* Triple-DES block cipher algorithm.
var TripleDES = C_algo.TripleDES = BlockCipher.extend({
// Create DES instances
this._des1 = DES.createEncryptor(WordArray.create(keyWords.slice(0, 2)));
this._des2 = DES.createEncryptor(WordArray.create(keyWords.slice(2, 4)));
this._des3 = DES.createEncryptor(WordArray.create(keyWords.slice(4, 6)));
this._des1.encryptBlock(M, offset);
this._des2.decryptBlock(M, offset);
this._des3.encryptBlock(M, offset);
this._des3.decryptBlock(M, offset);
this._des2.encryptBlock(M, offset);
this._des1.decryptBlock(M, offset);
keySize: 192/32,
* var ciphertext = CryptoJS.TripleDES.encrypt(message, key, cfg);
* var plaintext = CryptoJS.TripleDES.decrypt(ciphertext, key, cfg);
C.TripleDES = BlockCipher._createHelper(TripleDES);
return CryptoJS.TripleDES;
},{"./cipher-core":51,"./core":52,"./enc-base64":53,"./evpkdf":55,"./md5":60}],83:[function(require,module,exports){
var X32WordArray = C_lib.WordArray;
* x64 namespace.
var C_x64 = C.x64 = {};
* A 64-bit word.
var X64Word = C_x64.Word = Base.extend({
* Initializes a newly created 64-bit word.
* @param {number} high The high 32 bits.
* @param {number} low The low 32 bits.
* var x64Word = CryptoJS.x64.Word.create(0x00010203, 0x04050607);
init: function (high, low) {
this.high = high;
this.low = low;
* Bitwise NOTs this word.
* @return {X64Word} A new x64-Word object after negating.
* var negated = x64Word.not();
// not: function () {
// var high = ~this.high;
// var low = ~this.low;
// return X64Word.create(high, low);
// },
* Bitwise ANDs this word with the passed word.
* @param {X64Word} word The x64-Word to AND with this word.
* @return {X64Word} A new x64-Word object after ANDing.
* var anded = x64Word.and(anotherX64Word);
// and: function (word) {
// var high = this.high & word.high;
// var low = this.low & word.low;
* Bitwise ORs this word with the passed word.
* @param {X64Word} word The x64-Word to OR with this word.
* @return {X64Word} A new x64-Word object after ORing.
* var ored = x64Word.or(anotherX64Word);
// or: function (word) {
// var high = this.high | word.high;
// var low = this.low | word.low;
* Bitwise XORs this word with the passed word.
* @param {X64Word} word The x64-Word to XOR with this word.
* @return {X64Word} A new x64-Word object after XORing.
* var xored = x64Word.xor(anotherX64Word);
// xor: function (word) {
// var high = this.high ^ word.high;
// var low = this.low ^ word.low;
* Shifts this word n bits to the left.
* @param {number} n The number of bits to shift.
* @return {X64Word} A new x64-Word object after shifting.
* var shifted = x64Word.shiftL(25);
// shiftL: function (n) {
// if (n < 32) {
// var high = (this.high << n) | (this.low >>> (32 - n));
// var low = this.low << n;
// } else {
// var high = this.low << (n - 32);
// var low = 0;
* Shifts this word n bits to the right.
* var shifted = x64Word.shiftR(7);
// shiftR: function (n) {
// var low = (this.low >>> n) | (this.high << (32 - n));
// var high = this.high >>> n;
// var low = this.high >>> (n - 32);
// var high = 0;
* Rotates this word n bits to the left.
* @param {number} n The number of bits to rotate.
* @return {X64Word} A new x64-Word object after rotating.
* var rotated = x64Word.rotL(25);
// rotL: function (n) {
// return this.shiftL(n).or(this.shiftR(64 - n));
* Rotates this word n bits to the right.
* var rotated = x64Word.rotR(7);
// rotR: function (n) {
// return this.shiftR(n).or(this.shiftL(64 - n));
* Adds this word with the passed word.
* @param {X64Word} word The x64-Word to add with this word.
* @return {X64Word} A new x64-Word object after adding.
* var added = x64Word.add(anotherX64Word);
// add: function (word) {
// var low = (this.low + word.low) | 0;
// var carry = (low >>> 0) < (this.low >>> 0) ? 1 : 0;
// var high = (this.high + word.high + carry) | 0;
* An array of 64-bit words.
* @property {Array} words The array of CryptoJS.x64.Word objects.
var X64WordArray = C_x64.WordArray = Base.extend({
* @param {Array} words (Optional) An array of CryptoJS.x64.Word objects.
* var wordArray = CryptoJS.x64.WordArray.create();
* var wordArray = CryptoJS.x64.WordArray.create([
* CryptoJS.x64.Word.create(0x00010203, 0x04050607),
* CryptoJS.x64.Word.create(0x18191a1b, 0x1c1d1e1f)
* ]);
* ], 10);
this.sigBytes = words.length * 8;
* Converts this 64-bit word array to a 32-bit word array.
* @return {CryptoJS.lib.WordArray} This word array's data as a 32-bit word array.
* var x32WordArray = x64WordArray.toX32();
toX32: function () {
var x64Words = this.words;
var x64WordsLength = x64Words.length;
var x32Words = [];
for (var i = 0; i < x64WordsLength; i++) {
var x64Word = x64Words[i];
x32Words.push(x64Word.high);
x32Words.push(x64Word.low);
return X32WordArray.create(x32Words, this.sigBytes);
* @return {X64WordArray} The clone.
* var clone = x64WordArray.clone();
// Clone "words" array
var words = clone.words = this.words.slice(0);
// Clone each X64Word object
var wordsLength = words.length;
for (var i = 0; i < wordsLength; i++) {
words[i] = words[i].clone();
},{"./core":52}],84:[function(require,module,exports){
/*! https://mths.be/utf8js v2.0.0 by @mathias */
;(function(root) {
// Detect free variables exports
var freeExports = typeof exports == 'object' && exports;
// Detect free variable module
var freeModule = typeof module == 'object' && module &&
module.exports == freeExports && module;
// Detect free variable global, from Node.js or Browserified code,
// and use it as root
var freeGlobal = typeof global == 'object' && global;
if (freeGlobal.global === freeGlobal || freeGlobal.window === freeGlobal) {
root = freeGlobal;
/*--------------------------------------------------------------------------*/
var stringFromCharCode = String.fromCharCode;
// Taken from https://mths.be/punycode
function ucs2decode(string) {
var output = [];
var counter = 0;
var length = string.length;
var value;
var extra;
while (counter < length) {
value = string.charCodeAt(counter++);
if (value >= 0xD800 && value <= 0xDBFF && counter < length) {
// high surrogate, and there is a next character
extra = string.charCodeAt(counter++);
if ((extra & 0xFC00) == 0xDC00) { // low surrogate
output.push(((value & 0x3FF) << 10) + (extra & 0x3FF) + 0x10000);
// unmatched surrogate; only append this code unit, in case the next
// code unit is the high surrogate of a surrogate pair
output.push(value);
counter--;
return output;
function ucs2encode(array) {
var length = array.length;
var index = -1;
var output = '';
while (++index < length) {
value = array[index];
if (value > 0xFFFF) {
value -= 0x10000;
output += stringFromCharCode(value >>> 10 & 0x3FF | 0xD800);
value = 0xDC00 | value & 0x3FF;
output += stringFromCharCode(value);
function checkScalarValue(codePoint) {
if (codePoint >= 0xD800 && codePoint <= 0xDFFF) {
throw Error(
'Lone surrogate U+' + codePoint.toString(16).toUpperCase() +
' is not a scalar value'
function createByte(codePoint, shift) {
return stringFromCharCode(((codePoint >> shift) & 0x3F) | 0x80);
function encodeCodePoint(codePoint) {
if ((codePoint & 0xFFFFFF80) == 0) { // 1-byte sequence
return stringFromCharCode(codePoint);
var symbol = '';
if ((codePoint & 0xFFFFF800) == 0) { // 2-byte sequence
symbol = stringFromCharCode(((codePoint >> 6) & 0x1F) | 0xC0);
else if ((codePoint & 0xFFFF0000) == 0) { // 3-byte sequence
checkScalarValue(codePoint);
symbol = stringFromCharCode(((codePoint >> 12) & 0x0F) | 0xE0);
symbol += createByte(codePoint, 6);
else if ((codePoint & 0xFFE00000) == 0) { // 4-byte sequence
symbol = stringFromCharCode(((codePoint >> 18) & 0x07) | 0xF0);
symbol += createByte(codePoint, 12);
symbol += stringFromCharCode((codePoint & 0x3F) | 0x80);
return symbol;
function utf8encode(string) {
var codePoints = ucs2decode(string);
var length = codePoints.length;
var codePoint;
var byteString = '';
codePoint = codePoints[index];
byteString += encodeCodePoint(codePoint);
return byteString;
function readContinuationByte() {
if (byteIndex >= byteCount) {
throw Error('Invalid byte index');
var continuationByte = byteArray[byteIndex] & 0xFF;
byteIndex++;
if ((continuationByte & 0xC0) == 0x80) {
return continuationByte & 0x3F;
// If we end up here, it’s not a continuation byte
throw Error('Invalid continuation byte');
function decodeSymbol() {
var byte1;
var byte2;
var byte3;
var byte4;
if (byteIndex > byteCount) {
if (byteIndex == byteCount) {
// Read first byte
byte1 = byteArray[byteIndex] & 0xFF;
// 1-byte sequence (no continuation bytes)
if ((byte1 & 0x80) == 0) {
return byte1;
// 2-byte sequence
if ((byte1 & 0xE0) == 0xC0) {
var byte2 = readContinuationByte();
codePoint = ((byte1 & 0x1F) << 6) | byte2;
if (codePoint >= 0x80) {
return codePoint;
// 3-byte sequence (may include unpaired surrogates)
if ((byte1 & 0xF0) == 0xE0) {
byte2 = readContinuationByte();
byte3 = readContinuationByte();
codePoint = ((byte1 & 0x0F) << 12) | (byte2 << 6) | byte3;
if (codePoint >= 0x0800) {
// 4-byte sequence
if ((byte1 & 0xF8) == 0xF0) {
byte4 = readContinuationByte();
codePoint = ((byte1 & 0x0F) << 0x12) | (byte2 << 0x0C) |
(byte3 << 0x06) | byte4;
if (codePoint >= 0x010000 && codePoint <= 0x10FFFF) {
throw Error('Invalid UTF-8 detected');
var byteArray;
var byteCount;
var byteIndex;
function utf8decode(byteString) {
byteArray = ucs2decode(byteString);
byteCount = byteArray.length;
byteIndex = 0;
var codePoints = [];
var tmp;
while ((tmp = decodeSymbol()) !== false) {
codePoints.push(tmp);
return ucs2encode(codePoints);
var utf8 = {
'version': '2.0.0',
'encode': utf8encode,
'decode': utf8decode
// Some AMD build optimizers, like r.js, check for specific condition patterns
// like the following:
typeof define == 'function' &&
typeof define.amd == 'object' &&
define.amd
define(function() {
return utf8;
} else if (freeExports && !freeExports.nodeType) {
if (freeModule) { // in Node.js or RingoJS v0.8.0+
freeModule.exports = utf8;
} else { // in Narwhal or RingoJS v0.7.0-
var object = {};
var hasOwnProperty = object.hasOwnProperty;
for (var key in utf8) {
hasOwnProperty.call(utf8, key) && (freeExports[key] = utf8[key]);
} else { // in Rhino or a web browser
root.utf8 = utf8;
}(this));
},{}],"bignumber.js":[function(require,module,exports){
/*! bignumber.js v2.0.7 https://github.com/MikeMcl/bignumber.js/LICENCE */
;(function (global) {
bignumber.js v2.0.7
A JavaScript library for arbitrary-precision arithmetic.
https://github.com/MikeMcl/bignumber.js
Copyright (c) 2015 Michael Mclaughlin <M8ch88l@gmail.com>
MIT Expat Licence
var BigNumber, crypto, parseNumeric,
isNumeric = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i,
mathceil = Math.ceil,
mathfloor = Math.floor,
notBool = ' not a boolean or binary digit',
roundingMode = 'rounding mode',
tooManyDigits = 'number type has more than 15 significant digits',
ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_',
BASE = 1e14,
LOG_BASE = 14,
MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1
// MAX_INT32 = 0x7fffffff, // 2^31 - 1
POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],
SQRT_BASE = 1e7,
* The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and
* the arguments to toExponential, toFixed, toFormat, and toPrecision, beyond which an
* exception is thrown (if ERRORS is true).
MAX = 1E9; // 0 to MAX_INT32
* Create and return a BigNumber constructor.
function another(configObj) {
var div,
// id tracks the caller function, so its name can be included in error messages.
id = 0,
P = BigNumber.prototype,
ONE = new BigNumber(1),
/********************************* EDITABLE DEFAULTS **********************************/
* The default values below must be integers within the inclusive ranges stated.
* The values can also be changed at run-time using BigNumber.config.
// The maximum number of decimal places for operations involving division.
DECIMAL_PLACES = 20, // 0 to MAX
* The rounding mode used when rounding to the above decimal places, and when using
* toExponential, toFixed, toFormat and toPrecision, and round (default value).
* UP 0 Away from zero.
* DOWN 1 Towards zero.
* CEIL 2 Towards +Infinity.
* FLOOR 3 Towards -Infinity.
* HALF_UP 4 Towards nearest neighbour. If equidistant, up.
* HALF_DOWN 5 Towards nearest neighbour. If equidistant, down.
* HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour.
* HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity.
* HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
ROUNDING_MODE = 4, // 0 to 8
// EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]
// The exponent value at and beneath which toString returns exponential notation.
// Number type: -7
TO_EXP_NEG = -7, // 0 to -MAX
// The exponent value at and above which toString returns exponential notation.
// Number type: 21
TO_EXP_POS = 21, // 0 to MAX
// RANGE : [MIN_EXP, MAX_EXP]
// The minimum exponent value, beneath which underflow to zero occurs.
// Number type: -324 (5e-324)
MIN_EXP = -1e7, // -1 to -MAX
// The maximum exponent value, above which overflow to Infinity occurs.
// Number type: 308 (1.7976931348623157e+308)
// For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.
MAX_EXP = 1e7, // 1 to MAX
// Whether BigNumber Errors are ever thrown.
ERRORS = true, // true or false
// Change to intValidatorNoErrors if ERRORS is false.
isValidInt = intValidatorWithErrors, // intValidatorWithErrors/intValidatorNoErrors
// Whether to use cryptographically-secure random number generation, if available.
CRYPTO = false, // true or false
* The modulo mode used when calculating the modulus: a mod n.
* The quotient (q = a / n) is calculated according to the corresponding rounding mode.
* The remainder (r) is calculated as: r = a - n * q.
* UP 0 The remainder is positive if the dividend is negative, else is negative.
* DOWN 1 The remainder has the same sign as the dividend.
* This modulo mode is commonly known as 'truncated division' and is
* equivalent to (a % n) in JavaScript.
* FLOOR 3 The remainder has the same sign as the divisor (Python %).
* HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
* EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)).
* The remainder is always positive.
* The truncated division, floored division, Euclidian division and IEEE 754 remainder
* modes are commonly used for the modulus operation.
* Although the other rounding modes can also be used, they may not give useful results.
MODULO_MODE = 1, // 0 to 9
// The maximum number of significant digits of the result of the toPower operation.
// If POW_PRECISION is 0, there will be unlimited significant digits.
POW_PRECISION = 100, // 0 to MAX
// The format specification used by the BigNumber.prototype.toFormat method.
FORMAT = {
decimalSeparator: '.',
groupSeparator: ',',
groupSize: 3,
secondaryGroupSize: 0,
fractionGroupSeparator: '\xA0', // non-breaking space
fractionGroupSize: 0
/******************************************************************************************/
// CONSTRUCTOR
* The BigNumber constructor and exported function.
* Create and return a new instance of a BigNumber object.
* n {number|string|BigNumber} A numeric value.
* [b] {number} The base of n. Integer, 2 to 64 inclusive.
function BigNumber( n, b ) {
var c, e, i, num, len, str,
x = this;
// Enable constructor usage without new.
if ( !( x instanceof BigNumber ) ) {
// 'BigNumber() constructor call without new: {n}'
if (ERRORS) raise( 26, 'constructor call without new', n );
return new BigNumber( n, b );
// 'new BigNumber() base not an integer: {b}'
// 'new BigNumber() base out of range: {b}'
if ( b == null || !isValidInt( b, 2, 64, id, 'base' ) ) {
// Duplicate.
if ( n instanceof BigNumber ) {
x.s = n.s;
x.e = n.e;
x.c = ( n = n.c ) ? n.slice() : n;
id = 0;
if ( ( num = typeof n == 'number' ) && n * 0 == 0 ) {
x.s = 1 / n < 0 ? ( n = -n, -1 ) : 1;
// Fast path for integers.
if ( n === ~~n ) {
for ( e = 0, i = n; i >= 10; i /= 10, e++ );
x.e = e;
x.c = [n];
str = n + '';
if ( !isNumeric.test( str = n + '' ) ) return parseNumeric( x, str, num );
x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1;
b = b | 0;
// Ensure return value is rounded to DECIMAL_PLACES as with other bases.
// Allow exponential notation to be used with base 10 argument.
if ( b == 10 ) {
x = new BigNumber( n instanceof BigNumber ? n : str );
return round( x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE );
// Avoid potential interpretation of Infinity and NaN as base 44+ values.
// Any number in exponential form will fail due to the [Ee][+-].
if ( ( num = typeof n == 'number' ) && n * 0 != 0 ||
!( new RegExp( '^-?' + ( c = '[' + ALPHABET.slice( 0, b ) + ']+' ) +
'(?:\\.' + c + ')?$',b < 37 ? 'i' : '' ) ).test(str) ) {
return parseNumeric( x, str, num, b );
if (num) {
x.s = 1 / n < 0 ? ( str = str.slice(1), -1 ) : 1;
if ( ERRORS && str.replace( /^0\.0*|\./, '' ).length > 15 ) {
// 'new BigNumber() number type has more than 15 significant digits: {n}'
raise( id, tooManyDigits, n );
// Prevent later check for length on converted number.
num = false;
str = convertBase( str, 10, b, x.s );
// Decimal point?
if ( ( e = str.indexOf('.') ) > -1 ) str = str.replace( '.', '' );
// Exponential form?
if ( ( i = str.search( /e/i ) ) > 0 ) {
// Determine exponent.
if ( e < 0 ) e = i;
e += +str.slice( i + 1 );
str = str.substring( 0, i );
} else if ( e < 0 ) {
// Integer.
e = str.length;
// Determine leading zeros.
for ( i = 0; str.charCodeAt(i) === 48; i++ );
// Determine trailing zeros.
for ( len = str.length; str.charCodeAt(--len) === 48; );
str = str.slice( i, len + 1 );
if (str) {
len = str.length;
// Disallow numbers with over 15 significant digits if number type.
if ( num && ERRORS && len > 15 ) raise( id, tooManyDigits, x.s * n );
e = e - i - 1;
// Overflow?
if ( e > MAX_EXP ) {
// Infinity.
x.c = x.e = null;
// Underflow?
} else if ( e < MIN_EXP ) {
// Zero.
x.c = [ x.e = 0 ];
x.c = [];
// Transform base
// e is the base 10 exponent.
// i is where to slice str to get the first element of the coefficient array.
i = ( e + 1 ) % LOG_BASE;
if ( e < 0 ) i += LOG_BASE;
if ( i < len ) {
if (i) x.c.push( +str.slice( 0, i ) );
for ( len -= LOG_BASE; i < len; ) {
x.c.push( +str.slice( i, i += LOG_BASE ) );
str = str.slice(i);
i = LOG_BASE - str.length;
i -= len;
for ( ; i--; str += '0' );
x.c.push( +str );
// CONSTRUCTOR PROPERTIES
BigNumber.another = another;
BigNumber.ROUND_UP = 0;
BigNumber.ROUND_DOWN = 1;
BigNumber.ROUND_CEIL = 2;
BigNumber.ROUND_FLOOR = 3;
BigNumber.ROUND_HALF_UP = 4;
BigNumber.ROUND_HALF_DOWN = 5;
BigNumber.ROUND_HALF_EVEN = 6;
BigNumber.ROUND_HALF_CEIL = 7;
BigNumber.ROUND_HALF_FLOOR = 8;
BigNumber.EUCLID = 9;
* Configure infrequently-changing library-wide settings.
* Accept an object or an argument list, with one or many of the following properties or
* parameters respectively:
* DECIMAL_PLACES {number} Integer, 0 to MAX inclusive
* ROUNDING_MODE {number} Integer, 0 to 8 inclusive
* EXPONENTIAL_AT {number|number[]} Integer, -MAX to MAX inclusive or
* [integer -MAX to 0 incl., 0 to MAX incl.]
* RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
* [integer -MAX to -1 incl., integer 1 to MAX incl.]
* ERRORS {boolean|number} true, false, 1 or 0
* CRYPTO {boolean|number} true, false, 1 or 0
* MODULO_MODE {number} 0 to 9 inclusive
* POW_PRECISION {number} 0 to MAX inclusive
* FORMAT {object} See BigNumber.prototype.toFormat
* decimalSeparator {string}
* groupSeparator {string}
* groupSize {number}
* secondaryGroupSize {number}
* fractionGroupSeparator {string}
* fractionGroupSize {number}
* (The values assigned to the above FORMAT object properties are not checked for validity.)
* E.g.
* BigNumber.config(20, 4) is equivalent to
* BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })
* Ignore properties/parameters set to null or undefined.
* Return an object with the properties current values.
BigNumber.config = function () {
var v, p,
i = 0,
r = {},
a = arguments,
o = a[0],
has = o && typeof o == 'object'
? function () { if ( o.hasOwnProperty(p) ) return ( v = o[p] ) != null; }
: function () { if ( a.length > i ) return ( v = a[i++] ) != null; };
// DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.
// 'config() DECIMAL_PLACES not an integer: {v}'
// 'config() DECIMAL_PLACES out of range: {v}'
if ( has( p = 'DECIMAL_PLACES' ) && isValidInt( v, 0, MAX, 2, p ) ) {
DECIMAL_PLACES = v | 0;
r[p] = DECIMAL_PLACES;
// ROUNDING_MODE {number} Integer, 0 to 8 inclusive.
// 'config() ROUNDING_MODE not an integer: {v}'
// 'config() ROUNDING_MODE out of range: {v}'
if ( has( p = 'ROUNDING_MODE' ) && isValidInt( v, 0, 8, 2, p ) ) {
ROUNDING_MODE = v | 0;
r[p] = ROUNDING_MODE;
// EXPONENTIAL_AT {number|number[]}
// Integer, -MAX to MAX inclusive or [integer -MAX to 0 inclusive, 0 to MAX inclusive].
// 'config() EXPONENTIAL_AT not an integer: {v}'
// 'config() EXPONENTIAL_AT out of range: {v}'
if ( has( p = 'EXPONENTIAL_AT' ) ) {
if ( isArray(v) ) {
if ( isValidInt( v[0], -MAX, 0, 2, p ) && isValidInt( v[1], 0, MAX, 2, p ) ) {
TO_EXP_NEG = v[0] | 0;
TO_EXP_POS = v[1] | 0;
} else if ( isValidInt( v, -MAX, MAX, 2, p ) ) {
TO_EXP_NEG = -( TO_EXP_POS = ( v < 0 ? -v : v ) | 0 );
r[p] = [ TO_EXP_NEG, TO_EXP_POS ];
// RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
// [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].
// 'config() RANGE not an integer: {v}'
// 'config() RANGE cannot be zero: {v}'
// 'config() RANGE out of range: {v}'
if ( has( p = 'RANGE' ) ) {
if ( isValidInt( v[0], -MAX, -1, 2, p ) && isValidInt( v[1], 1, MAX, 2, p ) ) {
MIN_EXP = v[0] | 0;
MAX_EXP = v[1] | 0;
if ( v | 0 ) MIN_EXP = -( MAX_EXP = ( v < 0 ? -v : v ) | 0 );
else if (ERRORS) raise( 2, p + ' cannot be zero', v );
r[p] = [ MIN_EXP, MAX_EXP ];
// ERRORS {boolean|number} true, false, 1 or 0.
// 'config() ERRORS not a boolean or binary digit: {v}'
if ( has( p = 'ERRORS' ) ) {
if ( v === !!v || v === 1 || v === 0 ) {
isValidInt = ( ERRORS = !!v ) ? intValidatorWithErrors : intValidatorNoErrors;
} else if (ERRORS) {
raise( 2, p + notBool, v );
r[p] = ERRORS;
// CRYPTO {boolean|number} true, false, 1 or 0.
// 'config() CRYPTO not a boolean or binary digit: {v}'
// 'config() crypto unavailable: {crypto}'
if ( has( p = 'CRYPTO' ) ) {
CRYPTO = !!( v && crypto && typeof crypto == 'object' );
if ( v && !CRYPTO && ERRORS ) raise( 2, 'crypto unavailable', crypto );
r[p] = CRYPTO;
// MODULO_MODE {number} Integer, 0 to 9 inclusive.
// 'config() MODULO_MODE not an integer: {v}'
// 'config() MODULO_MODE out of range: {v}'
if ( has( p = 'MODULO_MODE' ) && isValidInt( v, 0, 9, 2, p ) ) {
MODULO_MODE = v | 0;
r[p] = MODULO_MODE;
// POW_PRECISION {number} Integer, 0 to MAX inclusive.
// 'config() POW_PRECISION not an integer: {v}'
// 'config() POW_PRECISION out of range: {v}'
if ( has( p = 'POW_PRECISION' ) && isValidInt( v, 0, MAX, 2, p ) ) {
POW_PRECISION = v | 0;
r[p] = POW_PRECISION;
// FORMAT {object}
// 'config() FORMAT not an object: {v}'
if ( has( p = 'FORMAT' ) ) {
if ( typeof v == 'object' ) {
FORMAT = v;
raise( 2, p + ' not an object', v );
r[p] = FORMAT;
return r;
* Return a new BigNumber whose value is the maximum of the arguments.
* arguments {number|string|BigNumber}
BigNumber.max = function () { return maxOrMin( arguments, P.lt ); };
* Return a new BigNumber whose value is the minimum of the arguments.
BigNumber.min = function () { return maxOrMin( arguments, P.gt ); };
* Return a new BigNumber with a random value equal to or greater than 0 and less than 1,
* and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing
* zeros are produced).
* [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
* 'random() decimal places not an integer: {dp}'
* 'random() decimal places out of range: {dp}'
* 'random() crypto unavailable: {crypto}'
BigNumber.random = (function () {
var pow2_53 = 0x20000000000000;
// Return a 53 bit integer n, where 0 <= n < 9007199254740992.
// Check if Math.random() produces more than 32 bits of randomness.
// If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.
// 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.
var random53bitInt = (Math.random() * pow2_53) & 0x1fffff
? function () { return mathfloor( Math.random() * pow2_53 ); }
: function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +
(Math.random() * 0x800000 | 0); };
return function (dp) {
var a, b, e, k, v,
c = [],
rand = new BigNumber(ONE);
dp = dp == null || !isValidInt( dp, 0, MAX, 14 ) ? DECIMAL_PLACES : dp | 0;
k = mathceil( dp / LOG_BASE );
if (CRYPTO) {
// Browsers supporting crypto.getRandomValues.
if ( crypto && crypto.getRandomValues ) {
a = crypto.getRandomValues( new Uint32Array( k *= 2 ) );
for ( ; i < k; ) {
// 53 bits:
// ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)
// 11111 11111111 11111111 11111111 11100000 00000000 00000000
// ((Math.pow(2, 32) - 1) >>> 11).toString(2)
// 11111 11111111 11111111
// 0x20000 is 2^21.
v = a[i] * 0x20000 + (a[i + 1] >>> 11);
// Rejection sampling:
// 0 <= v < 9007199254740992
// Probability that v >= 9e15, is
// 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251
if ( v >= 9e15 ) {
b = crypto.getRandomValues( new Uint32Array(2) );
a[i] = b[0];
a[i + 1] = b[1];
// 0 <= v <= 8999999999999999
// 0 <= (v % 1e14) <= 99999999999999
c.push( v % 1e14 );
i += 2;
i = k / 2;
// Node.js supporting crypto.randomBytes.
} else if ( crypto && crypto.randomBytes ) {
// buffer
a = crypto.randomBytes( k *= 7 );
// 0x1000000000000 is 2^48, 0x10000000000 is 2^40
// 0x100000000 is 2^32, 0x1000000 is 2^24
// 11111 11111111 11111111 11111111 11111111 11111111 11111111
v = ( ( a[i] & 31 ) * 0x1000000000000 ) + ( a[i + 1] * 0x10000000000 ) +
( a[i + 2] * 0x100000000 ) + ( a[i + 3] * 0x1000000 ) +
( a[i + 4] << 16 ) + ( a[i + 5] << 8 ) + a[i + 6];
crypto.randomBytes(7).copy( a, i );
i += 7;
i = k / 7;
raise( 14, 'crypto unavailable', crypto );
// Use Math.random: CRYPTO is false or crypto is unavailable and ERRORS is false.
if (!i) {
v = random53bitInt();
if ( v < 9e15 ) c[i++] = v % 1e14;
k = c[--i];
dp %= LOG_BASE;
// Convert trailing digits to zeros according to dp.
if ( k && dp ) {
v = POWS_TEN[LOG_BASE - dp];
c[i] = mathfloor( k / v ) * v;
// Remove trailing elements which are zero.
for ( ; c[i] === 0; c.pop(), i-- );
// Zero?
if ( i < 0 ) {
c = [ e = 0 ];
// Remove leading elements which are zero and adjust exponent accordingly.
for ( e = -1 ; c[0] === 0; c.shift(), e -= LOG_BASE);
// Count the digits of the first element of c to determine leading zeros, and...
for ( i = 1, v = c[0]; v >= 10; v /= 10, i++);
// adjust the exponent accordingly.
if ( i < LOG_BASE ) e -= LOG_BASE - i;
rand.e = e;
rand.c = c;
return rand;
// PRIVATE FUNCTIONS
// Convert a numeric string of baseIn to a numeric string of baseOut.
function convertBase( str, baseOut, baseIn, sign ) {
var d, e, k, r, x, xc, y,
i = str.indexOf( '.' ),
dp = DECIMAL_PLACES,
rm = ROUNDING_MODE;
if ( baseIn < 37 ) str = str.toLowerCase();
// Non-integer.
if ( i >= 0 ) {
k = POW_PRECISION;
// Unlimited precision.
POW_PRECISION = 0;
str = str.replace( '.', '' );
y = new BigNumber(baseIn);
x = y.pow( str.length - i );
POW_PRECISION = k;
// Convert str as if an integer, then restore the fraction part by dividing the
// result by its base raised to a power.
y.c = toBaseOut( toFixedPoint( coeffToString( x.c ), x.e ), 10, baseOut );
y.e = y.c.length;
// Convert the number as integer.
xc = toBaseOut( str, baseIn, baseOut );
e = k = xc.length;
// Remove trailing zeros.
for ( ; xc[--k] == 0; xc.pop() );
if ( !xc[0] ) return '0';
--e;
x.c = xc;
// sign is needed for correct rounding.
x.s = sign;
x = div( x, y, dp, rm, baseOut );
xc = x.c;
r = x.r;
e = x.e;
d = e + dp + 1;
// The rounding digit, i.e. the digit to the right of the digit that may be rounded up.
i = xc[d];
k = baseOut / 2;
r = r || d < 0 || xc[d + 1] != null;
r = rm < 4 ? ( i != null || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) )
: i > k || i == k &&( rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||
rm == ( x.s < 0 ? 8 : 7 ) );
if ( d < 1 || !xc[0] ) {
// 1^-dp or 0.
str = r ? toFixedPoint( '1', -dp ) : '0';
xc.length = d;
if (r) {
// Rounding up may mean the previous digit has to be rounded up and so on.
for ( --baseOut; ++xc[--d] > baseOut; ) {
xc[d] = 0;
if ( !d ) {
++e;
xc.unshift(1);
for ( k = xc.length; !xc[--k]; );
// E.g. [4, 11, 15] becomes 4bf.
for ( i = 0, str = ''; i <= k; str += ALPHABET.charAt( xc[i++] ) );
str = toFixedPoint( str, e );
// The caller will add the sign.
// Perform division in the specified base. Called by div and convertBase.
div = (function () {
// Assume non-zero x and k.
function multiply( x, k, base ) {
var m, temp, xlo, xhi,
carry = 0,
i = x.length,
klo = k % SQRT_BASE,
khi = k / SQRT_BASE | 0;
for ( x = x.slice(); i--; ) {
xlo = x[i] % SQRT_BASE;
xhi = x[i] / SQRT_BASE | 0;
m = khi * xlo + xhi * klo;
temp = klo * xlo + ( ( m % SQRT_BASE ) * SQRT_BASE ) + carry;
carry = ( temp / base | 0 ) + ( m / SQRT_BASE | 0 ) + khi * xhi;
x[i] = temp % base;
if (carry) x.unshift(carry);
return x;
function compare( a, b, aL, bL ) {
var i, cmp;
if ( aL != bL ) {
cmp = aL > bL ? 1 : -1;
for ( i = cmp = 0; i < aL; i++ ) {
if ( a[i] != b[i] ) {
cmp = a[i] > b[i] ? 1 : -1;
return cmp;
function subtract( a, b, aL, base ) {
var i = 0;
// Subtract b from a.
for ( ; aL--; ) {
a[aL] -= i;
i = a[aL] < b[aL] ? 1 : 0;
a[aL] = i * base + a[aL] - b[aL];
// Remove leading zeros.
for ( ; !a[0] && a.length > 1; a.shift() );
// x: dividend, y: divisor.
return function ( x, y, dp, rm, base ) {
var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,
yL, yz,
s = x.s == y.s ? 1 : -1,
xc = x.c,
yc = y.c;
// Either NaN, Infinity or 0?
if ( !xc || !xc[0] || !yc || !yc[0] ) {
return new BigNumber(
// Return NaN if either NaN, or both Infinity or 0.
!x.s || !y.s || ( xc ? yc && xc[0] == yc[0] : !yc ) ? NaN :
// Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.
xc && xc[0] == 0 || !yc ? s * 0 : s / 0
q = new BigNumber(s);
qc = q.c = [];
e = x.e - y.e;
s = dp + e + 1;
if ( !base ) {
base = BASE;
e = bitFloor( x.e / LOG_BASE ) - bitFloor( y.e / LOG_BASE );
s = s / LOG_BASE | 0;
// Result exponent may be one less then the current value of e.
// The coefficients of the BigNumbers from convertBase may have trailing zeros.
for ( i = 0; yc[i] == ( xc[i] || 0 ); i++ );
if ( yc[i] > ( xc[i] || 0 ) ) e--;
if ( s < 0 ) {
qc.push(1);
more = true;
xL = xc.length;
yL = yc.length;
i = 0;
s += 2;
// Normalise xc and yc so highest order digit of yc is >= base / 2.
n = mathfloor( base / ( yc[0] + 1 ) );
// Not necessary, but to handle odd bases where yc[0] == ( base / 2 ) - 1.
// if ( n > 1 || n++ == 1 && yc[0] < base / 2 ) {
if ( n > 1 ) {
yc = multiply( yc, n, base );
xc = multiply( xc, n, base );
xi = yL;
rem = xc.slice( 0, yL );
remL = rem.length;
// Add zeros to make remainder as long as divisor.
for ( ; remL < yL; rem[remL++] = 0 );
yz = yc.slice();
yz.unshift(0);
yc0 = yc[0];
if ( yc[1] >= base / 2 ) yc0++;
// Not necessary, but to prevent trial digit n > base, when using base 3.
// else if ( base == 3 && yc0 == 1 ) yc0 = 1 + 1e-15;
do {
n = 0;
// Compare divisor and remainder.
cmp = compare( yc, rem, yL, remL );
// If divisor < remainder.
if ( cmp < 0 ) {
// Calculate trial digit, n.
rem0 = rem[0];
if ( yL != remL ) rem0 = rem0 * base + ( rem[1] || 0 );
// n is how many times the divisor goes into the current remainder.
n = mathfloor( rem0 / yc0 );
// Algorithm:
// 1. product = divisor * trial digit (n)
// 2. if product > remainder: product -= divisor, n--
// 3. remainder -= product
// 4. if product was < remainder at 2:
// 5. compare new remainder and divisor
// 6. If remainder > divisor: remainder -= divisor, n++
// n may be > base only when base is 3.
if (n >= base) n = base - 1;
// product = divisor * trial digit.
prod = multiply( yc, n, base );
prodL = prod.length;
// Compare product and remainder.
// If product > remainder.
// Trial digit n too high.
// n is 1 too high about 5% of the time, and is not known to have
// ever been more than 1 too high.
while ( compare( prod, rem, prodL, remL ) == 1 ) {
n--;
// Subtract divisor from product.
subtract( prod, yL < prodL ? yz : yc, prodL, base );
cmp = 1;
// n is 0 or 1, cmp is -1.
// If n is 0, there is no need to compare yc and rem again below,
// so change cmp to 1 to avoid it.
// If n is 1, leave cmp as -1, so yc and rem are compared again.
if ( n == 0 ) {
// divisor < remainder, so n must be at least 1.
cmp = n = 1;
// product = divisor
prod = yc.slice();
if ( prodL < remL ) prod.unshift(0);
// Subtract product from remainder.
subtract( rem, prod, remL, base );
// If product was < remainder.
if ( cmp == -1 ) {
// Compare divisor and new remainder.
// If divisor < new remainder, subtract divisor from remainder.
// Trial digit n too low.
// n is 1 too low about 5% of the time, and very rarely 2 too low.
while ( compare( yc, rem, yL, remL ) < 1 ) {
// Subtract divisor from remainder.
subtract( rem, yL < remL ? yz : yc, remL, base );
} else if ( cmp === 0 ) {
rem = [0];
} // else cmp === 1 and n will be 0
// Add the next digit, n, to the result array.
qc[i++] = n;
// Update the remainder.
if ( rem[0] ) {
rem[remL++] = xc[xi] || 0;
rem = [ xc[xi] ];
remL = 1;
} while ( ( xi++ < xL || rem[0] != null ) && s-- );
more = rem[0] != null;
// Leading zero?
if ( !qc[0] ) qc.shift();
if ( base == BASE ) {
// To calculate q.e, first get the number of digits of qc[0].
for ( i = 1, s = qc[0]; s >= 10; s /= 10, i++ );
round( q, dp + ( q.e = i + e * LOG_BASE - 1 ) + 1, rm, more );
// Caller is convertBase.
q.e = e;
q.r = +more;
return q;
* Return a string representing the value of BigNumber n in fixed-point or exponential
* notation rounded to the specified decimal places or significant digits.
* n is a BigNumber.
* i is the index of the last digit required (i.e. the digit that may be rounded up).
* rm is the rounding mode.
* caller is caller id: toExponential 19, toFixed 20, toFormat 21, toPrecision 24.
function format( n, i, rm, caller ) {
var c0, e, ne, len, str;
rm = rm != null && isValidInt( rm, 0, 8, caller, roundingMode )
? rm | 0 : ROUNDING_MODE;
if ( !n.c ) return n.toString();
c0 = n.c[0];
ne = n.e;
if ( i == null ) {
str = coeffToString( n.c );
str = caller == 19 || caller == 24 && ne <= TO_EXP_NEG
? toExponential( str, ne )
: toFixedPoint( str, ne );
n = round( new BigNumber(n), i, rm );
// n.e may have changed if the value was rounded up.
e = n.e;
// toPrecision returns exponential notation if the number of significant digits
// specified is less than the number of digits necessary to represent the integer
// part of the value in fixed-point notation.
// Exponential notation.
if ( caller == 19 || caller == 24 && ( i <= e || e <= TO_EXP_NEG ) ) {
// Append zeros?
for ( ; len < i; str += '0', len++ );
str = toExponential( str, e );
// Fixed-point notation.
i -= ne;
if ( e + 1 > len ) {
if ( --i > 0 ) for ( str += '.'; i--; str += '0' );
i += e - len;
if ( i > 0 ) {
if ( e + 1 == len ) str += '.';
return n.s < 0 && c0 ? '-' + str : str;
// Handle BigNumber.max and BigNumber.min.
function maxOrMin( args, method ) {
var m, n,
if ( isArray( args[0] ) ) args = args[0];
m = new BigNumber( args[0] );
for ( ; ++i < args.length; ) {
n = new BigNumber( args[i] );
// If any number is NaN, return NaN.
if ( !n.s ) {
m = n;
} else if ( method.call( m, n ) ) {
return m;
* Return true if n is an integer in range, otherwise throw.
* Use for argument validation when ERRORS is true.
function intValidatorWithErrors( n, min, max, caller, name ) {
if ( n < min || n > max || n != truncate(n) ) {
raise( caller, ( name || 'decimal places' ) +
( n < min || n > max ? ' out of range' : ' not an integer' ), n );
* Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.
* Called by minus, plus and times.
function normalise( n, c, e ) {
var i = 1,
j = c.length;
for ( ; !c[--j]; c.pop() );
// Calculate the base 10 exponent. First get the number of digits of c[0].
for ( j = c[0]; j >= 10; j /= 10, i++ );
if ( ( e = i + e * LOG_BASE - 1 ) > MAX_EXP ) {
n.c = n.e = null;
n.c = [ n.e = 0 ];
n.e = e;
n.c = c;
// Handle values that fail the validity test in BigNumber.
parseNumeric = (function () {
var basePrefix = /^(-?)0([xbo])/i,
dotAfter = /^([^.]+)\.$/,
dotBefore = /^\.([^.]+)$/,
isInfinityOrNaN = /^-?(Infinity|NaN)$/,
whitespaceOrPlus = /^\s*\+|^\s+|\s+$/g;
return function ( x, str, num, b ) {
var base,
s = num ? str : str.replace( whitespaceOrPlus, '' );
// No exception on ±Infinity or NaN.
if ( isInfinityOrNaN.test(s) ) {
x.s = isNaN(s) ? null : s < 0 ? -1 : 1;
if ( !num ) {
// basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i
s = s.replace( basePrefix, function ( m, p1, p2 ) {
base = ( p2 = p2.toLowerCase() ) == 'x' ? 16 : p2 == 'b' ? 2 : 8;
return !b || b == base ? p1 : m;
if (b) {
base = b;
// E.g. '1.' to '1', '.1' to '0.1'
s = s.replace( dotAfter, '$1' ).replace( dotBefore, '0.$1' );
if ( str != s ) return new BigNumber( s, base );
// 'new BigNumber() not a number: {n}'
// 'new BigNumber() not a base {b} number: {n}'
if (ERRORS) raise( id, 'not a' + ( b ? ' base ' + b : '' ) + ' number', str );
x.s = null;
// Throw a BigNumber Error.
function raise( caller, msg, val ) {
var error = new Error( [
'new BigNumber', // 0
'cmp', // 1
'config', // 2
'div', // 3
'divToInt', // 4
'eq', // 5
'gt', // 6
'gte', // 7
'lt', // 8
'lte', // 9
'minus', // 10
'mod', // 11
'plus', // 12
'precision', // 13
'random', // 14
'round', // 15
'shift', // 16
'times', // 17
'toDigits', // 18
'toExponential', // 19
'toFixed', // 20
'toFormat', // 21
'toFraction', // 22
'pow', // 23
'toPrecision', // 24
'toString', // 25
'BigNumber' // 26
][caller] + '() ' + msg + ': ' + val );
error.name = 'BigNumber Error';
throw error;
* Round x to sd significant digits using rounding mode rm. Check for over/under-flow.
* If r is truthy, it is known that there are more digits after the rounding digit.
function round( x, sd, rm, r ) {
var d, i, j, k, n, ni, rd,
pows10 = POWS_TEN;
// if x is not Infinity or NaN...
if (xc) {
// rd is the rounding digit, i.e. the digit after the digit that may be rounded up.
// n is a base 1e14 number, the value of the element of array x.c containing rd.
// ni is the index of n within x.c.
// d is the number of digits of n.
// i is the index of rd within n including leading zeros.
// j is the actual index of rd within n (if < 0, rd is a leading zero).
out: {
// Get the number of digits of the first element of xc.
for ( d = 1, k = xc[0]; k >= 10; k /= 10, d++ );
i = sd - d;
// If the rounding digit is in the first element of xc...
i += LOG_BASE;
j = sd;
n = xc[ ni = 0 ];
// Get the rounding digit at index j of n.
rd = n / pows10[ d - j - 1 ] % 10 | 0;
ni = mathceil( ( i + 1 ) / LOG_BASE );
if ( ni >= xc.length ) {
// Needed by sqrt.
for ( ; xc.length <= ni; xc.push(0) );
n = rd = 0;
d = 1;
i %= LOG_BASE;
j = i - LOG_BASE + 1;
break out;
n = k = xc[ni];
// Get the number of digits of n.
for ( d = 1; k >= 10; k /= 10, d++ );
// Get the index of rd within n.
// Get the index of rd within n, adjusted for leading zeros.
// The number of leading zeros of n is given by LOG_BASE - d.
j = i - LOG_BASE + d;
rd = j < 0 ? 0 : n / pows10[ d - j - 1 ] % 10 | 0;
r = r || sd < 0 ||
// Are there any non-zero digits after the rounding digit?
// The expression n % pows10[ d - j - 1 ] returns all digits of n to the right
// of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.
xc[ni + 1] != null || ( j < 0 ? n : n % pows10[ d - j - 1 ] );
r = rm < 4
? ( rd || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) )
: rd > 5 || rd == 5 && ( rm == 4 || r || rm == 6 &&
// Check whether the digit to the left of the rounding digit is odd.
( ( i > 0 ? j > 0 ? n / pows10[ d - j ] : 0 : xc[ni - 1] ) % 10 ) & 1 ||
if ( sd < 1 || !xc[0] ) {
xc.length = 0;
// Convert sd to decimal places.
sd -= x.e + 1;
// 1, 0.1, 0.01, 0.001, 0.0001 etc.
xc[0] = pows10[ sd % LOG_BASE ];
x.e = -sd || 0;
xc[0] = x.e = 0;
// Remove excess digits.
if ( i == 0 ) {
xc.length = ni;
k = 1;
ni--;
xc.length = ni + 1;
k = pows10[ LOG_BASE - i ];
// E.g. 56700 becomes 56000 if 7 is the rounding digit.
// j > 0 means i > number of leading zeros of n.
xc[ni] = j > 0 ? mathfloor( n / pows10[ d - j ] % pows10[j] ) * k : 0;
// Round up?
for ( ; ; ) {
// If the digit to be rounded up is in the first element of xc...
if ( ni == 0 ) {
// i will be the length of xc[0] before k is added.
for ( i = 1, j = xc[0]; j >= 10; j /= 10, i++ );
j = xc[0] += k;
for ( k = 1; j >= 10; j /= 10, k++ );
// if i != k the length has increased.
if ( i != k ) {
x.e++;
if ( xc[0] == BASE ) xc[0] = 1;
xc[ni] += k;
if ( xc[ni] != BASE ) break;
xc[ni--] = 0;
for ( i = xc.length; xc[--i] === 0; xc.pop() );
// Overflow? Infinity.
if ( x.e > MAX_EXP ) {
// Underflow? Zero.
} else if ( x.e < MIN_EXP ) {
// PROTOTYPE/INSTANCE METHODS
* Return a new BigNumber whose value is the absolute value of this BigNumber.
P.absoluteValue = P.abs = function () {
var x = new BigNumber(this);
if ( x.s < 0 ) x.s = 1;
* Return a new BigNumber whose value is the value of this BigNumber rounded to a whole
* number in the direction of Infinity.
P.ceil = function () {
return round( new BigNumber(this), this.e + 1, 2 );
* Return
* 1 if the value of this BigNumber is greater than the value of BigNumber(y, b),
* -1 if the value of this BigNumber is less than the value of BigNumber(y, b),
* 0 if they have the same value,
* or null if the value of either is NaN.
P.comparedTo = P.cmp = function ( y, b ) {
id = 1;
return compare( this, new BigNumber( y, b ) );
* Return the number of decimal places of the value of this BigNumber, or null if the value
* of this BigNumber is ±Infinity or NaN.
P.decimalPlaces = P.dp = function () {
var n, v,
c = this.c;
if ( !c ) return null;
n = ( ( v = c.length - 1 ) - bitFloor( this.e / LOG_BASE ) ) * LOG_BASE;
// Subtract the number of trailing zeros of the last number.
if ( v = c[v] ) for ( ; v % 10 == 0; v /= 10, n-- );
if ( n < 0 ) n = 0;
* n / 0 = I
* n / N = N
* n / I = 0
* 0 / n = 0
* 0 / 0 = N
* 0 / N = N
* 0 / I = 0
* N / n = N
* N / 0 = N
* N / N = N
* N / I = N
* I / n = I
* I / 0 = I
* I / N = N
* I / I = N
* Return a new BigNumber whose value is the value of this BigNumber divided by the value of
* BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE.
P.dividedBy = P.div = function ( y, b ) {
id = 3;
return div( this, new BigNumber( y, b ), DECIMAL_PLACES, ROUNDING_MODE );
* Return a new BigNumber whose value is the integer part of dividing the value of this
* BigNumber by the value of BigNumber(y, b).
P.dividedToIntegerBy = P.divToInt = function ( y, b ) {
id = 4;
return div( this, new BigNumber( y, b ), 0, 1 );
* Return true if the value of this BigNumber is equal to the value of BigNumber(y, b),
* otherwise returns false.
P.equals = P.eq = function ( y, b ) {
id = 5;
return compare( this, new BigNumber( y, b ) ) === 0;
* number in the direction of -Infinity.
P.floor = function () {
return round( new BigNumber(this), this.e + 1, 3 );
* Return true if the value of this BigNumber is greater than the value of BigNumber(y, b),
P.greaterThan = P.gt = function ( y, b ) {
id = 6;
return compare( this, new BigNumber( y, b ) ) > 0;
* Return true if the value of this BigNumber is greater than or equal to the value of
* BigNumber(y, b), otherwise returns false.
P.greaterThanOrEqualTo = P.gte = function ( y, b ) {
id = 7;
return ( b = compare( this, new BigNumber( y, b ) ) ) === 1 || b === 0;
* Return true if the value of this BigNumber is a finite number, otherwise returns false.
P.isFinite = function () {
return !!this.c;
* Return true if the value of this BigNumber is an integer, otherwise return false.
P.isInteger = P.isInt = function () {
return !!this.c && bitFloor( this.e / LOG_BASE ) > this.c.length - 2;
* Return true if the value of this BigNumber is NaN, otherwise returns false.
P.isNaN = function () {
return !this.s;
* Return true if the value of this BigNumber is negative, otherwise returns false.
P.isNegative = P.isNeg = function () {
return this.s < 0;
* Return true if the value of this BigNumber is 0 or -0, otherwise returns false.
P.isZero = function () {
return !!this.c && this.c[0] == 0;
* Return true if the value of this BigNumber is less than the value of BigNumber(y, b),
P.lessThan = P.lt = function ( y, b ) {
id = 8;
return compare( this, new BigNumber( y, b ) ) < 0;
* Return true if the value of this BigNumber is less than or equal to the value of
P.lessThanOrEqualTo = P.lte = function ( y, b ) {
id = 9;
return ( b = compare( this, new BigNumber( y, b ) ) ) === -1 || b === 0;
* n - 0 = n
* n - N = N
* n - I = -I
* 0 - n = -n
* 0 - 0 = 0
* 0 - N = N
* 0 - I = -I
* N - n = N
* N - 0 = N
* N - N = N
* N - I = N
* I - n = I
* I - 0 = I
* I - N = N
* I - I = N
* Return a new BigNumber whose value is the value of this BigNumber minus the value of
* BigNumber(y, b).
P.minus = P.sub = function ( y, b ) {
var i, j, t, xLTy,
x = this,
a = x.s;
id = 10;
y = new BigNumber( y, b );
b = y.s;
// Either NaN?
if ( !a || !b ) return new BigNumber(NaN);
// Signs differ?
if ( a != b ) {
y.s = -b;
return x.plus(y);
var xe = x.e / LOG_BASE,
ye = y.e / LOG_BASE,
if ( !xe || !ye ) {
// Either Infinity?
if ( !xc || !yc ) return xc ? ( y.s = -b, y ) : new BigNumber( yc ? x : NaN );
// Either zero?
if ( !xc[0] || !yc[0] ) {
// Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
return yc[0] ? ( y.s = -b, y ) : new BigNumber( xc[0] ? x :
// IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
ROUNDING_MODE == 3 ? -0 : 0 );
xe = bitFloor(xe);
ye = bitFloor(ye);
xc = xc.slice();
// Determine which is the bigger number.
if ( a = xe - ye ) {
if ( xLTy = a < 0 ) {
a = -a;
t = xc;
ye = xe;
t = yc;
t.reverse();
// Prepend zeros to equalise exponents.
for ( b = a; b--; t.push(0) );
// Exponents equal. Check digit by digit.
j = ( xLTy = ( a = xc.length ) < ( b = yc.length ) ) ? a : b;
for ( a = b = 0; b < j; b++ ) {
if ( xc[b] != yc[b] ) {
xLTy = xc[b] < yc[b];
// x < y? Point xc to the array of the bigger number.
if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s;
b = ( j = yc.length ) - ( i = xc.length );
// Append zeros to xc if shorter.
// No need to add zeros to yc if shorter as subtract only needs to start at yc.length.
if ( b > 0 ) for ( ; b--; xc[i++] = 0 );
b = BASE - 1;
// Subtract yc from xc.
for ( ; j > a; ) {
if ( xc[--j] < yc[j] ) {
for ( i = j; i && !xc[--i]; xc[i] = b );
--xc[i];
xc[j] += BASE;
xc[j] -= yc[j];
// Remove leading zeros and adjust exponent accordingly.
for ( ; xc[0] == 0; xc.shift(), --ye );
if ( !xc[0] ) {
// Following IEEE 754 (2008) 6.3,
// n - n = +0 but n - n = -0 when rounding towards -Infinity.
y.s = ROUNDING_MODE == 3 ? -1 : 1;
y.c = [ y.e = 0 ];
return y;
// No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity
// for finite x and y.
return normalise( y, xc, ye );
* n % 0 = N
* n % N = N
* n % I = n
* 0 % n = 0
* -0 % n = -0
* 0 % 0 = N
* 0 % N = N
* 0 % I = 0
* N % n = N
* N % 0 = N
* N % N = N
* N % I = N
* I % n = N
* I % 0 = N
* I % N = N
* I % I = N
* Return a new BigNumber whose value is the value of this BigNumber modulo the value of
* BigNumber(y, b). The result depends on the value of MODULO_MODE.
P.modulo = P.mod = function ( y, b ) {
var q, s,
id = 11;
// Return NaN if x is Infinity or NaN, or y is NaN or zero.
if ( !x.c || !y.s || y.c && !y.c[0] ) {
return new BigNumber(NaN);
// Return x if y is Infinity or x is zero.
} else if ( !y.c || x.c && !x.c[0] ) {
return new BigNumber(x);
if ( MODULO_MODE == 9 ) {
// Euclidian division: q = sign(y) * floor(x / abs(y))
// r = x - qy where 0 <= r < abs(y)
s = y.s;
y.s = 1;
q = div( x, y, 0, 3 );
y.s = s;
q.s *= s;
q = div( x, y, 0, MODULO_MODE );
return x.minus( q.times(y) );
* Return a new BigNumber whose value is the value of this BigNumber negated,
* i.e. multiplied by -1.
P.negated = P.neg = function () {
x.s = -x.s || null;
* n + 0 = n
* n + N = N
* n + I = I
* 0 + n = n
* 0 + 0 = 0
* 0 + N = N
* 0 + I = I
* N + n = N
* N + 0 = N
* N + N = N
* N + I = N
* I + n = I
* I + 0 = I
* I + N = N
* I + I = I
* Return a new BigNumber whose value is the value of this BigNumber plus the value of
P.plus = P.add = function ( y, b ) {
var t,
id = 12;
return x.minus(y);
// Return ±Infinity if either ±Infinity.
if ( !xc || !yc ) return new BigNumber( a / 0 );
if ( !xc[0] || !yc[0] ) return yc[0] ? y : new BigNumber( xc[0] ? x : a * 0 );
// Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.
if ( a > 0 ) {
for ( ; a--; t.push(0) );
a = xc.length;
b = yc.length;
// Point xc to the longer array, and b to the shorter length.
if ( a - b < 0 ) t = yc, yc = xc, xc = t, b = a;
// Only start adding at yc.length - 1 as the further digits of xc can be ignored.
for ( a = 0; b; ) {
a = ( xc[--b] = xc[b] + yc[b] + a ) / BASE | 0;
xc[b] %= BASE;
if (a) {
xc.unshift(a);
++ye;
// No need to check for zero, as +x + +y != 0 && -x + -y != 0
// ye = MAX_EXP + 1 possible
* Return the number of significant digits of the value of this BigNumber.
* [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0.
P.precision = P.sd = function (z) {
c = x.c;
// 'precision() argument not a boolean or binary digit: {z}'
if ( z != null && z !== !!z && z !== 1 && z !== 0 ) {
if (ERRORS) raise( 13, 'argument' + notBool, z );
if ( z != !!z ) z = null;
v = c.length - 1;
n = v * LOG_BASE + 1;
if ( v = c[v] ) {
// Subtract the number of trailing zeros of the last element.
for ( ; v % 10 == 0; v /= 10, n-- );
// Add the number of digits of the first element.
for ( v = c[0]; v >= 10; v /= 10, n++ );
if ( z && x.e + 1 > n ) n = x.e + 1;
* Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of
* dp decimal places using rounding mode rm, or to 0 and ROUNDING_MODE respectively if
* omitted.
* [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
* 'round() decimal places out of range: {dp}'
* 'round() decimal places not an integer: {dp}'
* 'round() rounding mode not an integer: {rm}'
* 'round() rounding mode out of range: {rm}'
P.round = function ( dp, rm ) {
var n = new BigNumber(this);
if ( dp == null || isValidInt( dp, 0, MAX, 15 ) ) {
round( n, ~~dp + this.e + 1, rm == null ||
!isValidInt( rm, 0, 8, 15, roundingMode ) ? ROUNDING_MODE : rm | 0 );
* Return a new BigNumber whose value is the value of this BigNumber shifted by k places
* (powers of 10). Shift to the right if n > 0, and to the left if n < 0.
* k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
* If k is out of range and ERRORS is false, the result will be ±0 if k < 0, or ±Infinity
* otherwise.
* 'shift() argument not an integer: {k}'
* 'shift() argument out of range: {k}'
P.shift = function (k) {
var n = this;
return isValidInt( k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 16, 'argument' )
// k < 1e+21, or truncate(k) will produce exponential notation.
? n.times( '1e' + truncate(k) )
: new BigNumber( n.c && n.c[0] && ( k < -MAX_SAFE_INTEGER || k > MAX_SAFE_INTEGER )
? n.s * ( k < 0 ? 0 : 1 / 0 )
: n );
* sqrt(-n) = N
* sqrt( N) = N
* sqrt(-I) = N
* sqrt( I) = I
* sqrt( 0) = 0
* sqrt(-0) = -0
* Return a new BigNumber whose value is the square root of the value of this BigNumber,
* rounded according to DECIMAL_PLACES and ROUNDING_MODE.
P.squareRoot = P.sqrt = function () {
var m, n, r, rep, t,
c = x.c,
s = x.s,
e = x.e,
dp = DECIMAL_PLACES + 4,
half = new BigNumber('0.5');
// Negative/NaN/Infinity/zero?
if ( s !== 1 || !c || !c[0] ) {
return new BigNumber( !s || s < 0 && ( !c || c[0] ) ? NaN : c ? x : 1 / 0 );
// Initial estimate.
s = Math.sqrt( +x );
// Math.sqrt underflow/overflow?
// Pass x to Math.sqrt as integer, then adjust the exponent of the result.
if ( s == 0 || s == 1 / 0 ) {
n = coeffToString(c);
if ( ( n.length + e ) % 2 == 0 ) n += '0';
s = Math.sqrt(n);
e = bitFloor( ( e + 1 ) / 2 ) - ( e < 0 || e % 2 );
if ( s == 1 / 0 ) {
n = '1e' + e;
n = s.toExponential();
n = n.slice( 0, n.indexOf('e') + 1 ) + e;
r = new BigNumber(n);
r = new BigNumber( s + '' );
// Check for zero.
// r could be zero if MIN_EXP is changed after the this value was created.
// This would cause a division by zero (x/t) and hence Infinity below, which would cause
// coeffToString to throw.
if ( r.c[0] ) {
e = r.e;
s = e + dp;
if ( s < 3 ) s = 0;
// Newton-Raphson iteration.
t = r;
r = half.times( t.plus( div( x, t, dp, 1 ) ) );
if ( coeffToString( t.c ).slice( 0, s ) === ( n =
coeffToString( r.c ) ).slice( 0, s ) ) {
// The exponent of r may here be one less than the final result exponent,
// e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits
// are indexed correctly.
if ( r.e < e ) --s;
n = n.slice( s - 3, s + 1 );
// The 4th rounding digit may be in error by -1 so if the 4 rounding digits
// are 9999 or 4999 (i.e. approaching a rounding boundary) continue the
// iteration.
if ( n == '9999' || !rep && n == '4999' ) {
// On the first iteration only, check to see if rounding up gives the
// exact result as the nines may infinitely repeat.
if ( !rep ) {
round( t, t.e + DECIMAL_PLACES + 2, 0 );
if ( t.times(t).eq(x) ) {
r = t;
dp += 4;
s += 4;
rep = 1;
// If rounding digits are null, 0{0,4} or 50{0,3}, check for exact
// result. If not, then there are further digits and m will be truthy.
if ( !+n || !+n.slice(1) && n.charAt(0) == '5' ) {
// Truncate to the first rounding digit.
round( r, r.e + DECIMAL_PLACES + 2, 1 );
m = !r.times(r).eq(x);
return round( r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m );
* n * 0 = 0
* n * N = N
* n * I = I
* 0 * n = 0
* 0 * 0 = 0
* 0 * N = N
* 0 * I = N
* N * n = N
* N * 0 = N
* N * N = N
* N * I = N
* I * n = I
* I * 0 = N
* I * N = N
* I * I = I
* Return a new BigNumber whose value is the value of this BigNumber times the value of
P.times = P.mul = function ( y, b ) {
var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc,
base, sqrtBase,
yc = ( id = 17, y = new BigNumber( y, b ) ).c;
// Either NaN, ±Infinity or ±0?
if ( !xc || !yc || !xc[0] || !yc[0] ) {
// Return NaN if either is NaN, or one is 0 and the other is Infinity.
if ( !x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc ) {
y.c = y.e = y.s = null;
y.s *= x.s;
// Return ±Infinity if either is ±Infinity.
if ( !xc || !yc ) {
y.c = y.e = null;
// Return ±0 if either is ±0.
y.c = [0];
y.e = 0;
e = bitFloor( x.e / LOG_BASE ) + bitFloor( y.e / LOG_BASE );
xcL = xc.length;
ycL = yc.length;
// Ensure xc points to longer array and xcL to its length.
if ( xcL < ycL ) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i;
// Initialise the result array with zeros.
for ( i = xcL + ycL, zc = []; i--; zc.push(0) );
sqrtBase = SQRT_BASE;
for ( i = ycL; --i >= 0; ) {
c = 0;
ylo = yc[i] % sqrtBase;
yhi = yc[i] / sqrtBase | 0;
for ( k = xcL, j = i + k; j > i; ) {
xlo = xc[--k] % sqrtBase;
xhi = xc[k] / sqrtBase | 0;
m = yhi * xlo + xhi * ylo;
xlo = ylo * xlo + ( ( m % sqrtBase ) * sqrtBase ) + zc[j] + c;
c = ( xlo / base | 0 ) + ( m / sqrtBase | 0 ) + yhi * xhi;
zc[j--] = xlo % base;
zc[j] = c;
if (c) {
zc.shift();
return normalise( y, zc, e );
* sd significant digits using rounding mode rm, or ROUNDING_MODE if rm is omitted.
* [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
* 'toDigits() precision out of range: {sd}'
* 'toDigits() precision not an integer: {sd}'
* 'toDigits() rounding mode not an integer: {rm}'
* 'toDigits() rounding mode out of range: {rm}'
P.toDigits = function ( sd, rm ) {
sd = sd == null || !isValidInt( sd, 1, MAX, 18, 'precision' ) ? null : sd | 0;
rm = rm == null || !isValidInt( rm, 0, 8, 18, roundingMode ) ? ROUNDING_MODE : rm | 0;
return sd ? round( n, sd, rm ) : n;
* Return a string representing the value of this BigNumber in exponential notation and
* rounded using ROUNDING_MODE to dp fixed decimal places.
* 'toExponential() decimal places not an integer: {dp}'
* 'toExponential() decimal places out of range: {dp}'
* 'toExponential() rounding mode not an integer: {rm}'
* 'toExponential() rounding mode out of range: {rm}'
P.toExponential = function ( dp, rm ) {
return format( this,
dp != null && isValidInt( dp, 0, MAX, 19 ) ? ~~dp + 1 : null, rm, 19 );
* Return a string representing the value of this BigNumber in fixed-point notation rounding
* to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted.
* Note: as with JavaScript's number type, (-0).toFixed(0) is '0',
* but e.g. (-0.00001).toFixed(0) is '-0'.
* 'toFixed() decimal places not an integer: {dp}'
* 'toFixed() decimal places out of range: {dp}'
* 'toFixed() rounding mode not an integer: {rm}'
* 'toFixed() rounding mode out of range: {rm}'
P.toFixed = function ( dp, rm ) {
return format( this, dp != null && isValidInt( dp, 0, MAX, 20 )
? ~~dp + this.e + 1 : null, rm, 20 );
* Return a string representing the value of this BigNumber in fixed-point notation rounded
* using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties
* of the FORMAT object (see BigNumber.config).
* FORMAT = {
* decimalSeparator : '.',
* groupSeparator : ',',
* groupSize : 3,
* secondaryGroupSize : 0,
* fractionGroupSeparator : '\xA0', // non-breaking space
* fractionGroupSize : 0
* };
* 'toFormat() decimal places not an integer: {dp}'
* 'toFormat() decimal places out of range: {dp}'
* 'toFormat() rounding mode not an integer: {rm}'
* 'toFormat() rounding mode out of range: {rm}'
P.toFormat = function ( dp, rm ) {
var str = format( this, dp != null && isValidInt( dp, 0, MAX, 21 )
? ~~dp + this.e + 1 : null, rm, 21 );
if ( this.c ) {
var i,
arr = str.split('.'),
g1 = +FORMAT.groupSize,
g2 = +FORMAT.secondaryGroupSize,
groupSeparator = FORMAT.groupSeparator,
intPart = arr[0],
fractionPart = arr[1],
isNeg = this.s < 0,
intDigits = isNeg ? intPart.slice(1) : intPart,
len = intDigits.length;
if (g2) i = g1, g1 = g2, g2 = i, len -= i;
if ( g1 > 0 && len > 0 ) {
i = len % g1 || g1;
intPart = intDigits.substr( 0, i );
for ( ; i < len; i += g1 ) {
intPart += groupSeparator + intDigits.substr( i, g1 );
if ( g2 > 0 ) intPart += groupSeparator + intDigits.slice(i);
if (isNeg) intPart = '-' + intPart;
str = fractionPart
? intPart + FORMAT.decimalSeparator + ( ( g2 = +FORMAT.fractionGroupSize )
? fractionPart.replace( new RegExp( '\\d{' + g2 + '}\\B', 'g' ),
'$&' + FORMAT.fractionGroupSeparator )
: fractionPart )
: intPart;
* Return a string array representing the value of this BigNumber as a simple fraction with
* an integer numerator and an integer denominator. The denominator will be a positive
* non-zero value less than or equal to the specified maximum denominator. If a maximum
* denominator is not specified, the denominator will be the lowest value necessary to
* represent the number exactly.
* [md] {number|string|BigNumber} Integer >= 1 and < Infinity. The maximum denominator.
* 'toFraction() max denominator not an integer: {md}'
* 'toFraction() max denominator out of range: {md}'
P.toFraction = function (md) {
var arr, d0, d2, e, exp, n, n0, q, s,
k = ERRORS,
d = new BigNumber(ONE),
n1 = d0 = new BigNumber(ONE),
d1 = n0 = new BigNumber(ONE);
if ( md != null ) {
ERRORS = false;
n = new BigNumber(md);
ERRORS = k;
if ( !( k = n.isInt() ) || n.lt(ONE) ) {
if (ERRORS) {
raise( 22,
'max denominator ' + ( k ? 'out of range' : 'not an integer' ), md );
// ERRORS is false:
// If md is a finite non-integer >= 1, round it to an integer and use it.
md = !k && n.c && round( n, n.e + 1, 1 ).gte(ONE) ? n : null;
if ( !xc ) return x.toString();
s = coeffToString(xc);
// Determine initial denominator.
// d is a power of 10 and the minimum max denominator that specifies the value exactly.
e = d.e = s.length - x.e - 1;
d.c[0] = POWS_TEN[ ( exp = e % LOG_BASE ) < 0 ? LOG_BASE + exp : exp ];
md = !md || n.cmp(d) > 0 ? ( e > 0 ? d : n1 ) : n;
exp = MAX_EXP;
MAX_EXP = 1 / 0;
n = new BigNumber(s);
// n0 = d1 = 0
n0.c[0] = 0;
q = div( n, d, 0, 1 );
d2 = d0.plus( q.times(d1) );
if ( d2.cmp(md) == 1 ) break;
d0 = d1;
d1 = d2;
n1 = n0.plus( q.times( d2 = n1 ) );
n0 = d2;
d = n.minus( q.times( d2 = d ) );
n = d2;
d2 = div( md.minus(d0), d1, 0, 1 );
n0 = n0.plus( d2.times(n1) );
d0 = d0.plus( d2.times(d1) );
n0.s = n1.s = x.s;
e *= 2;
// Determine which fraction is closer to x, n0/d0 or n1/d1
arr = div( n1, d1, e, ROUNDING_MODE ).minus(x).abs().cmp(
div( n0, d0, e, ROUNDING_MODE ).minus(x).abs() ) < 1
? [ n1.toString(), d1.toString() ]
: [ n0.toString(), d0.toString() ];
MAX_EXP = exp;
return arr;
* Return the value of this BigNumber converted to a number primitive.
P.toNumber = function () {
var x = this;
// Ensure zero has correct sign.
return +x || ( x.s ? x.s * 0 : NaN );
* Return a BigNumber whose value is the value of this BigNumber raised to the power n.
* If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE.
* If POW_PRECISION is not 0, round to POW_PRECISION using ROUNDING_MODE.
* n {number} Integer, -9007199254740992 to 9007199254740992 inclusive.
* (Performs 54 loop iterations for n of 9007199254740992.)
* 'pow() exponent not an integer: {n}'
* 'pow() exponent out of range: {n}'
P.toPower = P.pow = function (n) {
var k, y,
i = mathfloor( n < 0 ? -n : +n ),
// Pass ±Infinity to Math.pow if exponent is out of range.
if ( !isValidInt( n, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 23, 'exponent' ) &&
( !isFinite(n) || i > MAX_SAFE_INTEGER && ( n /= 0 ) ||
parseFloat(n) != n && !( n = NaN ) ) ) {
return new BigNumber( Math.pow( +x, n ) );
// Truncating each coefficient array to a length of k after each multiplication equates
// to truncating significant digits to POW_PRECISION + [28, 41], i.e. there will be a
// minimum of 28 guard digits retained. (Using + 1.5 would give [9, 21] guard digits.)
k = POW_PRECISION ? mathceil( POW_PRECISION / LOG_BASE + 2 ) : 0;
y = new BigNumber(ONE);
if ( i % 2 ) {
y = y.times(x);
if ( !y.c ) break;
if ( k && y.c.length > k ) y.c.length = k;
i = mathfloor( i / 2 );
if ( !i ) break;
x = x.times(x);
if ( k && x.c && x.c.length > k ) x.c.length = k;
if ( n < 0 ) y = ONE.div(y);
return k ? round( y, POW_PRECISION, ROUNDING_MODE ) : y;
* Return a string representing the value of this BigNumber rounded to sd significant digits
* using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits
* necessary to represent the integer part of the value in fixed-point notation, then use
* exponential notation.
* 'toPrecision() precision not an integer: {sd}'
* 'toPrecision() precision out of range: {sd}'
* 'toPrecision() rounding mode not an integer: {rm}'
* 'toPrecision() rounding mode out of range: {rm}'
P.toPrecision = function ( sd, rm ) {
return format( this, sd != null && isValidInt( sd, 1, MAX, 24, 'precision' )
? sd | 0 : null, rm, 24 );
* Return a string representing the value of this BigNumber in base b, or base 10 if b is
* omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and
* ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent
* that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than
* TO_EXP_NEG, return exponential notation.
* [b] {number} Integer, 2 to 64 inclusive.
* 'toString() base not an integer: {b}'
* 'toString() base out of range: {b}'
P.toString = function (b) {
var str,
n = this,
s = n.s,
// Infinity or NaN?
if ( e === null ) {
if (s) {
str = 'Infinity';
if ( s < 0 ) str = '-' + str;
str = 'NaN';
if ( b == null || !isValidInt( b, 2, 64, 25, 'base' ) ) {
str = e <= TO_EXP_NEG || e >= TO_EXP_POS
? toExponential( str, e )
: toFixedPoint( str, e );
str = convertBase( toFixedPoint( str, e ), b | 0, 10, s );
if ( s < 0 && n.c[0] ) str = '-' + str;
* Return a new BigNumber whose value is the value of this BigNumber truncated to a whole
* number.
P.truncated = P.trunc = function () {
return round( new BigNumber(this), this.e + 1, 1 );
* Return as toString, but do not accept a base argument.
P.valueOf = P.toJSON = function () {
return this.toString();
// Aliases for BigDecimal methods.
//P.add = P.plus; // P.add included above
//P.subtract = P.minus; // P.sub included above
//P.multiply = P.times; // P.mul included above
//P.divide = P.div;
//P.remainder = P.mod;
//P.compareTo = P.cmp;
//P.negate = P.neg;
if ( configObj != null ) BigNumber.config(configObj);
return BigNumber;
// PRIVATE HELPER FUNCTIONS
function bitFloor(n) {
var i = n | 0;
return n > 0 || n === i ? i : i - 1;
// Return a coefficient array as a string of base 10 digits.
function coeffToString(a) {
var s, z,
i = 1,
j = a.length,
r = a[0] + '';
for ( ; i < j; ) {
s = a[i++] + '';
z = LOG_BASE - s.length;
for ( ; z--; s = '0' + s );
r += s;
for ( j = r.length; r.charCodeAt(--j) === 48; );
return r.slice( 0, j + 1 || 1 );
// Compare the value of BigNumbers x and y.
function compare( x, y ) {
var a, b,
yc = y.c,
i = x.s,
j = y.s,
k = x.e,
l = y.e;
if ( !i || !j ) return null;
a = xc && !xc[0];
b = yc && !yc[0];
if ( a || b ) return a ? b ? 0 : -j : i;
if ( i != j ) return i;
a = i < 0;
b = k == l;
if ( !xc || !yc ) return b ? 0 : !xc ^ a ? 1 : -1;
// Compare exponents.
if ( !b ) return k > l ^ a ? 1 : -1;
j = ( k = xc.length ) < ( l = yc.length ) ? k : l;
// Compare digit by digit.
for ( i = 0; i < j; i++ ) if ( xc[i] != yc[i] ) return xc[i] > yc[i] ^ a ? 1 : -1;
// Compare lengths.
return k == l ? 0 : k > l ^ a ? 1 : -1;
* Return true if n is a valid number in range, otherwise false.
* Use for argument validation when ERRORS is false.
* Note: parseInt('1e+1') == 1 but parseFloat('1e+1') == 10.
function intValidatorNoErrors( n, min, max ) {
return ( n = truncate(n) ) >= min && n <= max;
function isArray(obj) {
return Object.prototype.toString.call(obj) == '[object Array]';
* Convert string of baseIn to an array of numbers of baseOut.
* Eg. convertBase('255', 10, 16) returns [15, 15].
* Eg. convertBase('ff', 16, 10) returns [2, 5, 5].
function toBaseOut( str, baseIn, baseOut ) {
var j,
arr = [0],
arrL,
for ( ; i < len; ) {
for ( arrL = arr.length; arrL--; arr[arrL] *= baseIn );
arr[ j = 0 ] += ALPHABET.indexOf( str.charAt( i++ ) );
for ( ; j < arr.length; j++ ) {
if ( arr[j] > baseOut - 1 ) {
if ( arr[j + 1] == null ) arr[j + 1] = 0;
arr[j + 1] += arr[j] / baseOut | 0;
arr[j] %= baseOut;
return arr.reverse();
function toExponential( str, e ) {
return ( str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str ) +
( e < 0 ? 'e' : 'e+' ) + e;
function toFixedPoint( str, e ) {
var len, z;
// Negative exponent?
if ( e < 0 ) {
// Prepend zeros.
for ( z = '0.'; ++e; z += '0' );
str = z + str;
// Positive exponent
// Append zeros.
if ( ++e > len ) {
for ( z = '0', e -= len; --e; z += '0' );
str += z;
} else if ( e < len ) {
str = str.slice( 0, e ) + '.' + str.slice(e);
function truncate(n) {
n = parseFloat(n);
return n < 0 ? mathceil(n) : mathfloor(n);
// EXPORT
BigNumber = another();
// AMD.
if ( typeof define == 'function' && define.amd ) {
define( function () { return BigNumber; } );
// Node and other environments that support module.exports.
} else if ( typeof module != 'undefined' && module.exports ) {
module.exports = BigNumber;
if ( !crypto ) try { crypto = require('crypto'); } catch (e) {}
// Browser.
global.BigNumber = BigNumber;
})(this);
},{"crypto":49}],"web3":[function(require,module,exports){
var Web3 = require('./lib/web3');
// dont override global variable
if (typeof window !== 'undefined' && typeof window.Web3 === 'undefined') {
window.Web3 = Web3;
},{"./lib/web3":22}]},{},["web3"])
//# sourceMappingURL=web3.js.map
`