217 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
		
		
			
		
	
	
			217 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| 
								 | 
							
								// Copyright 2013 The Go Authors. All rights reserved.
							 | 
						||
| 
								 | 
							
								// Use of this source code is governed by a BSD-style
							 | 
						||
| 
								 | 
							
								// license that can be found in the LICENSE file.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Package sha3 implements the SHA3 hash algorithm (formerly called Keccak) chosen by NIST in 2012.
							 | 
						||
| 
								 | 
							
								// This file provides a SHA3 implementation which implements the standard hash.Hash interface.
							 | 
						||
| 
								 | 
							
								// Writing input data, including padding, and reading output data are computed in this file.
							 | 
						||
| 
								 | 
							
								// Note that the current implementation can compute the hash of an integral number of bytes only.
							 | 
						||
| 
								 | 
							
								// This is a consequence of the hash interface in which a buffer of bytes is passed in.
							 | 
						||
| 
								 | 
							
								// The internals of the Keccak-f function are computed in keccakf.go.
							 | 
						||
| 
								 | 
							
								// For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/).
							 | 
						||
| 
								 | 
							
								package sha3
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import (
							 | 
						||
| 
								 | 
							
									"encoding/binary"
							 | 
						||
| 
								 | 
							
									"hash"
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// laneSize is the size in bytes of each "lane" of the internal state of SHA3 (5 * 5 * 8).
							 | 
						||
| 
								 | 
							
								// Note that changing this size would requires using a type other than uint64 to store each lane.
							 | 
						||
| 
								 | 
							
								const laneSize = 8
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// sliceSize represents the dimensions of the internal state, a square matrix of
							 | 
						||
| 
								 | 
							
								// sliceSize ** 2 lanes. This is the size of both the "rows" and "columns" dimensions in the
							 | 
						||
| 
								 | 
							
								// terminology of the SHA3 specification.
							 | 
						||
| 
								 | 
							
								const sliceSize = 5
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// numLanes represents the total number of lanes in the state.
							 | 
						||
| 
								 | 
							
								const numLanes = sliceSize * sliceSize
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// stateSize is the size in bytes of the internal state of SHA3 (5 * 5 * WSize).
							 | 
						||
| 
								 | 
							
								const stateSize = laneSize * numLanes
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// digest represents the partial evaluation of a checksum.
							 | 
						||
| 
								 | 
							
								// Note that capacity, and not outputSize, is the critical security parameter, as SHA3 can output
							 | 
						||
| 
								 | 
							
								// an arbitrary number of bytes for any given capacity. The Keccak proposal recommends that
							 | 
						||
| 
								 | 
							
								// capacity = 2*outputSize to ensure that finding a collision of size outputSize requires
							 | 
						||
| 
								 | 
							
								// O(2^{outputSize/2}) computations (the birthday lower bound). Future standards may modify the
							 | 
						||
| 
								 | 
							
								// capacity/outputSize ratio to allow for more output with lower cryptographic security.
							 | 
						||
| 
								 | 
							
								type digest struct {
							 | 
						||
| 
								 | 
							
									a          [numLanes]uint64  // main state of the hash
							 | 
						||
| 
								 | 
							
									b          [numLanes]uint64  // intermediate states
							 | 
						||
| 
								 | 
							
									c          [sliceSize]uint64 // intermediate states
							 | 
						||
| 
								 | 
							
									d          [sliceSize]uint64 // intermediate states
							 | 
						||
| 
								 | 
							
									outputSize int               // desired output size in bytes
							 | 
						||
| 
								 | 
							
									capacity   int               // number of bytes to leave untouched during squeeze/absorb
							 | 
						||
| 
								 | 
							
									absorbed   int               // number of bytes absorbed thus far
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// minInt returns the lesser of two integer arguments, to simplify the absorption routine.
							 | 
						||
| 
								 | 
							
								func minInt(v1, v2 int) int {
							 | 
						||
| 
								 | 
							
									if v1 <= v2 {
							 | 
						||
| 
								 | 
							
										return v1
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return v2
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// rate returns the number of bytes of the internal state which can be absorbed or squeezed
							 | 
						||
| 
								 | 
							
								// in between calls to the permutation function.
							 | 
						||
| 
								 | 
							
								func (d *digest) rate() int {
							 | 
						||
| 
								 | 
							
									return stateSize - d.capacity
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Reset clears the internal state by zeroing bytes in the state buffer.
							 | 
						||
| 
								 | 
							
								// This can be skipped for a newly-created hash state; the default zero-allocated state is correct.
							 | 
						||
| 
								 | 
							
								func (d *digest) Reset() {
							 | 
						||
| 
								 | 
							
									d.absorbed = 0
							 | 
						||
| 
								 | 
							
									for i := range d.a {
							 | 
						||
| 
								 | 
							
										d.a[i] = 0
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// BlockSize, required by the hash.Hash interface, does not have a standard intepretation
							 | 
						||
| 
								 | 
							
								// for a sponge-based construction like SHA3. We return the data rate: the number of bytes which
							 | 
						||
| 
								 | 
							
								// can be absorbed per invocation of the permutation function. For Merkle-Damgård based hashes
							 | 
						||
| 
								 | 
							
								// (ie SHA1, SHA2, MD5) the output size of the internal compression function is returned.
							 | 
						||
| 
								 | 
							
								// We consider this to be roughly equivalent because it represents the number of bytes of output
							 | 
						||
| 
								 | 
							
								// produced per cryptographic operation.
							 | 
						||
| 
								 | 
							
								func (d *digest) BlockSize() int { return d.rate() }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Size returns the output size of the hash function in bytes.
							 | 
						||
| 
								 | 
							
								func (d *digest) Size() int {
							 | 
						||
| 
								 | 
							
									return d.outputSize
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// unalignedAbsorb is a helper function for Write, which absorbs data that isn't aligned with an
							 | 
						||
| 
								 | 
							
								// 8-byte lane. This requires shifting the individual bytes into position in a uint64.
							 | 
						||
| 
								 | 
							
								func (d *digest) unalignedAbsorb(p []byte) {
							 | 
						||
| 
								 | 
							
									var t uint64
							 | 
						||
| 
								 | 
							
									for i := len(p) - 1; i >= 0; i-- {
							 | 
						||
| 
								 | 
							
										t <<= 8
							 | 
						||
| 
								 | 
							
										t |= uint64(p[i])
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									offset := (d.absorbed) % d.rate()
							 | 
						||
| 
								 | 
							
									t <<= 8 * uint(offset%laneSize)
							 | 
						||
| 
								 | 
							
									d.a[offset/laneSize] ^= t
							 | 
						||
| 
								 | 
							
									d.absorbed += len(p)
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Write "absorbs" bytes into the state of the SHA3 hash, updating as needed when the sponge
							 | 
						||
| 
								 | 
							
								// "fills up" with rate() bytes. Since lanes are stored internally as type uint64, this requires
							 | 
						||
| 
								 | 
							
								// converting the incoming bytes into uint64s using a little endian interpretation. This
							 | 
						||
| 
								 | 
							
								// implementation is optimized for large, aligned writes of multiples of 8 bytes (laneSize).
							 | 
						||
| 
								 | 
							
								// Non-aligned or uneven numbers of bytes require shifting and are slower.
							 | 
						||
| 
								 | 
							
								func (d *digest) Write(p []byte) (int, error) {
							 | 
						||
| 
								 | 
							
									// An initial offset is needed if the we aren't absorbing to the first lane initially.
							 | 
						||
| 
								 | 
							
									offset := d.absorbed % d.rate()
							 | 
						||
| 
								 | 
							
									toWrite := len(p)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// The first lane may need to absorb unaligned and/or incomplete data.
							 | 
						||
| 
								 | 
							
									if (offset%laneSize != 0 || len(p) < 8) && len(p) > 0 {
							 | 
						||
| 
								 | 
							
										toAbsorb := minInt(laneSize-(offset%laneSize), len(p))
							 | 
						||
| 
								 | 
							
										d.unalignedAbsorb(p[:toAbsorb])
							 | 
						||
| 
								 | 
							
										p = p[toAbsorb:]
							 | 
						||
| 
								 | 
							
										offset = (d.absorbed) % d.rate()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// For every rate() bytes absorbed, the state must be permuted via the F Function.
							 | 
						||
| 
								 | 
							
										if (d.absorbed)%d.rate() == 0 {
							 | 
						||
| 
								 | 
							
											d.keccakF()
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// This loop should absorb the bulk of the data into full, aligned lanes.
							 | 
						||
| 
								 | 
							
									// It will call the update function as necessary.
							 | 
						||
| 
								 | 
							
									for len(p) > 7 {
							 | 
						||
| 
								 | 
							
										firstLane := offset / laneSize
							 | 
						||
| 
								 | 
							
										lastLane := minInt(d.rate()/laneSize, firstLane+len(p)/laneSize)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										// This inner loop absorbs input bytes into the state in groups of 8, converted to uint64s.
							 | 
						||
| 
								 | 
							
										for lane := firstLane; lane < lastLane; lane++ {
							 | 
						||
| 
								 | 
							
											d.a[lane] ^= binary.LittleEndian.Uint64(p[:laneSize])
							 | 
						||
| 
								 | 
							
											p = p[laneSize:]
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										d.absorbed += (lastLane - firstLane) * laneSize
							 | 
						||
| 
								 | 
							
										// For every rate() bytes absorbed, the state must be permuted via the F Function.
							 | 
						||
| 
								 | 
							
										if (d.absorbed)%d.rate() == 0 {
							 | 
						||
| 
								 | 
							
											d.keccakF()
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										offset = 0
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									// If there are insufficient bytes to fill the final lane, an unaligned absorption.
							 | 
						||
| 
								 | 
							
									// This should always start at a correct lane boundary though, or else it would be caught
							 | 
						||
| 
								 | 
							
									// by the uneven opening lane case above.
							 | 
						||
| 
								 | 
							
									if len(p) > 0 {
							 | 
						||
| 
								 | 
							
										d.unalignedAbsorb(p)
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									return toWrite, nil
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// pad computes the SHA3 padding scheme based on the number of bytes absorbed.
							 | 
						||
| 
								 | 
							
								// The padding is a 1 bit, followed by an arbitrary number of 0s and then a final 1 bit, such that
							 | 
						||
| 
								 | 
							
								// the input bits plus padding bits are a multiple of rate(). Adding the padding simply requires
							 | 
						||
| 
								 | 
							
								// xoring an opening and closing bit into the appropriate lanes.
							 | 
						||
| 
								 | 
							
								func (d *digest) pad() {
							 | 
						||
| 
								 | 
							
									offset := d.absorbed % d.rate()
							 | 
						||
| 
								 | 
							
									// The opening pad bit must be shifted into position based on the number of bytes absorbed
							 | 
						||
| 
								 | 
							
									padOpenLane := offset / laneSize
							 | 
						||
| 
								 | 
							
									d.a[padOpenLane] ^= 0x0000000000000001 << uint(8*(offset%laneSize))
							 | 
						||
| 
								 | 
							
									// The closing padding bit is always in the last position
							 | 
						||
| 
								 | 
							
									padCloseLane := (d.rate() / laneSize) - 1
							 | 
						||
| 
								 | 
							
									d.a[padCloseLane] ^= 0x8000000000000000
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// finalize prepares the hash to output data by padding and one final permutation of the state.
							 | 
						||
| 
								 | 
							
								func (d *digest) finalize() {
							 | 
						||
| 
								 | 
							
									d.pad()
							 | 
						||
| 
								 | 
							
									d.keccakF()
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// squeeze outputs an arbitrary number of bytes from the hash state.
							 | 
						||
| 
								 | 
							
								// Squeezing can require multiple calls to the F function (one per rate() bytes squeezed),
							 | 
						||
| 
								 | 
							
								// although this is not the case for standard SHA3 parameters. This implementation only supports
							 | 
						||
| 
								 | 
							
								// squeezing a single time, subsequent squeezes may lose alignment. Future implementations
							 | 
						||
| 
								 | 
							
								// may wish to support multiple squeeze calls, for example to support use as a PRNG.
							 | 
						||
| 
								 | 
							
								func (d *digest) squeeze(in []byte, toSqueeze int) []byte {
							 | 
						||
| 
								 | 
							
									// Because we read in blocks of laneSize, we need enough room to read
							 | 
						||
| 
								 | 
							
									// an integral number of lanes
							 | 
						||
| 
								 | 
							
									needed := toSqueeze + (laneSize-toSqueeze%laneSize)%laneSize
							 | 
						||
| 
								 | 
							
									if cap(in)-len(in) < needed {
							 | 
						||
| 
								 | 
							
										newIn := make([]byte, len(in), len(in)+needed)
							 | 
						||
| 
								 | 
							
										copy(newIn, in)
							 | 
						||
| 
								 | 
							
										in = newIn
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									out := in[len(in) : len(in)+needed]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for len(out) > 0 {
							 | 
						||
| 
								 | 
							
										for i := 0; i < d.rate() && len(out) > 0; i += laneSize {
							 | 
						||
| 
								 | 
							
											binary.LittleEndian.PutUint64(out[:], d.a[i/laneSize])
							 | 
						||
| 
								 | 
							
											out = out[laneSize:]
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										if len(out) > 0 {
							 | 
						||
| 
								 | 
							
											d.keccakF()
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return in[:len(in)+toSqueeze] // Re-slice in case we wrote extra data.
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Sum applies padding to the hash state and then squeezes out the desired nubmer of output bytes.
							 | 
						||
| 
								 | 
							
								func (d *digest) Sum(in []byte) []byte {
							 | 
						||
| 
								 | 
							
									// Make a copy of the original hash so that caller can keep writing and summing.
							 | 
						||
| 
								 | 
							
									dup := *d
							 | 
						||
| 
								 | 
							
									dup.finalize()
							 | 
						||
| 
								 | 
							
									return dup.squeeze(in, dup.outputSize)
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// The NewKeccakX constructors enable initializing a hash in any of the four recommend sizes
							 | 
						||
| 
								 | 
							
								// from the Keccak specification, all of which set capacity=2*outputSize. Note that the final
							 | 
						||
| 
								 | 
							
								// NIST standard for SHA3 may specify different input/output lengths.
							 | 
						||
| 
								 | 
							
								// The output size is indicated in bits but converted into bytes internally.
							 | 
						||
| 
								 | 
							
								func NewKeccak224() hash.Hash { return &digest{outputSize: 224 / 8, capacity: 2 * 224 / 8} }
							 | 
						||
| 
								 | 
							
								func NewKeccak256() hash.Hash { return &digest{outputSize: 256 / 8, capacity: 2 * 256 / 8} }
							 | 
						||
| 
								 | 
							
								func NewKeccak384() hash.Hash { return &digest{outputSize: 384 / 8, capacity: 2 * 384 / 8} }
							 | 
						||
| 
								 | 
							
								func NewKeccak512() hash.Hash { return &digest{outputSize: 512 / 8, capacity: 2 * 512 / 8} }
							 |