490 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
		
		
			
		
	
	
			490 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
|   | package ecies | ||
|  | 
 | ||
|  | import ( | ||
|  | 	"bytes" | ||
|  | 	"crypto/elliptic" | ||
|  | 	"crypto/rand" | ||
|  | 	"crypto/sha256" | ||
|  | 	"flag" | ||
|  | 	"fmt" | ||
|  | 	"io/ioutil" | ||
|  | 	"testing" | ||
|  | ) | ||
|  | 
 | ||
|  | var dumpEnc bool | ||
|  | 
 | ||
|  | func init() { | ||
|  | 	flDump := flag.Bool("dump", false, "write encrypted test message to file") | ||
|  | 	flag.Parse() | ||
|  | 	dumpEnc = *flDump | ||
|  | } | ||
|  | 
 | ||
|  | // Ensure the KDF generates appropriately sized keys. | ||
|  | func TestKDF(t *testing.T) { | ||
|  | 	msg := []byte("Hello, world") | ||
|  | 	h := sha256.New() | ||
|  | 
 | ||
|  | 	k, err := concatKDF(h, msg, nil, 64) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 	if len(k) != 64 { | ||
|  | 		fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n", | ||
|  | 			len(k)) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | var skLen int | ||
|  | var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match") | ||
|  | 
 | ||
|  | // cmpParams compares a set of ECIES parameters. We assume, as per the | ||
|  | // docs, that AES is the only supported symmetric encryption algorithm. | ||
|  | func cmpParams(p1, p2 *ECIESParams) bool { | ||
|  | 	if p1.hashAlgo != p2.hashAlgo { | ||
|  | 		return false | ||
|  | 	} else if p1.KeyLen != p2.KeyLen { | ||
|  | 		return false | ||
|  | 	} else if p1.BlockSize != p2.BlockSize { | ||
|  | 		return false | ||
|  | 	} | ||
|  | 	return true | ||
|  | } | ||
|  | 
 | ||
|  | // cmpPublic returns true if the two public keys represent the same pojnt. | ||
|  | func cmpPublic(pub1, pub2 PublicKey) bool { | ||
|  | 	if pub1.X == nil || pub1.Y == nil { | ||
|  | 		fmt.Println(ErrInvalidPublicKey.Error()) | ||
|  | 		return false | ||
|  | 	} | ||
|  | 	if pub2.X == nil || pub2.Y == nil { | ||
|  | 		fmt.Println(ErrInvalidPublicKey.Error()) | ||
|  | 		return false | ||
|  | 	} | ||
|  | 	pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y) | ||
|  | 	pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y) | ||
|  | 
 | ||
|  | 	return bytes.Equal(pub1Out, pub2Out) | ||
|  | } | ||
|  | 
 | ||
|  | // cmpPrivate returns true if the two private keys are the same. | ||
|  | func cmpPrivate(prv1, prv2 *PrivateKey) bool { | ||
|  | 	if prv1 == nil || prv1.D == nil { | ||
|  | 		return false | ||
|  | 	} else if prv2 == nil || prv2.D == nil { | ||
|  | 		return false | ||
|  | 	} else if prv1.D.Cmp(prv2.D) != 0 { | ||
|  | 		return false | ||
|  | 	} else { | ||
|  | 		return cmpPublic(prv1.PublicKey, prv2.PublicKey) | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | // Validate the ECDH component. | ||
|  | func TestSharedKey(t *testing.T) { | ||
|  | 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 	skLen = MaxSharedKeyLength(&prv1.PublicKey) / 2 | ||
|  | 
 | ||
|  | 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if !bytes.Equal(sk1, sk2) { | ||
|  | 		fmt.Println(ErrBadSharedKeys.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | // Verify that the key generation code fails when too much key data is | ||
|  | // requested. | ||
|  | func TestTooBigSharedKey(t *testing.T) { | ||
|  | 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_, err = prv1.GenerateShared(&prv2.PublicKey, skLen*2, skLen*2) | ||
|  | 	if err != ErrSharedKeyTooBig { | ||
|  | 		fmt.Println("ecdh: shared key should be too large for curve") | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_, err = prv2.GenerateShared(&prv1.PublicKey, skLen*2, skLen*2) | ||
|  | 	if err != ErrSharedKeyTooBig { | ||
|  | 		fmt.Println("ecdh: shared key should be too large for curve") | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | // Ensure a public key can be successfully marshalled and unmarshalled, and | ||
|  | // that the decoded key is the same as the original. | ||
|  | func TestMarshalPublic(t *testing.T) { | ||
|  | 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	out, err := MarshalPublic(&prv.PublicKey) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	pub, err := UnmarshalPublic(out) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if !cmpPublic(prv.PublicKey, *pub) { | ||
|  | 		fmt.Println("ecies: failed to unmarshal public key") | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | // Ensure that a private key can be encoded into DER format, and that | ||
|  | // the resulting key is properly parsed back into a public key. | ||
|  | func TestMarshalPrivate(t *testing.T) { | ||
|  | 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	out, err := MarshalPrivate(prv) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if dumpEnc { | ||
|  | 		ioutil.WriteFile("test.out", out, 0644) | ||
|  | 	} | ||
|  | 
 | ||
|  | 	prv2, err := UnmarshalPrivate(out) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if !cmpPrivate(prv, prv2) { | ||
|  | 		fmt.Println("ecdh: private key import failed") | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | // Ensure that a private key can be successfully encoded to PEM format, and | ||
|  | // the resulting key is properly parsed back in. | ||
|  | func TestPrivatePEM(t *testing.T) { | ||
|  | 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	out, err := ExportPrivatePEM(prv) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if dumpEnc { | ||
|  | 		ioutil.WriteFile("test.key", out, 0644) | ||
|  | 	} | ||
|  | 
 | ||
|  | 	prv2, err := ImportPrivatePEM(out) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} else if !cmpPrivate(prv, prv2) { | ||
|  | 		fmt.Println("ecdh: import from PEM failed") | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | // Ensure that a public key can be successfully encoded to PEM format, and | ||
|  | // the resulting key is properly parsed back in. | ||
|  | func TestPublicPEM(t *testing.T) { | ||
|  | 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	out, err := ExportPublicPEM(&prv.PublicKey) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if dumpEnc { | ||
|  | 		ioutil.WriteFile("test.pem", out, 0644) | ||
|  | 	} | ||
|  | 
 | ||
|  | 	pub2, err := ImportPublicPEM(out) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} else if !cmpPublic(prv.PublicKey, *pub2) { | ||
|  | 		fmt.Println("ecdh: import from PEM failed") | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | // Benchmark the generation of P256 keys. | ||
|  | func BenchmarkGenerateKeyP256(b *testing.B) { | ||
|  | 	for i := 0; i < b.N; i++ { | ||
|  | 		if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil { | ||
|  | 			fmt.Println(err.Error()) | ||
|  | 			b.FailNow() | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | // Benchmark the generation of P256 shared keys. | ||
|  | func BenchmarkGenSharedKeyP256(b *testing.B) { | ||
|  | 	prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		b.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for i := 0; i < b.N; i++ { | ||
|  | 		_, err := prv.GenerateShared(&prv.PublicKey, skLen, skLen) | ||
|  | 		if err != nil { | ||
|  | 			fmt.Println(err.Error()) | ||
|  | 			b.FailNow() | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | // Verify that an encrypted message can be successfully decrypted. | ||
|  | func TestEncryptDecrypt(t *testing.T) { | ||
|  | 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	message := []byte("Hello, world.") | ||
|  | 	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if !bytes.Equal(pt, message) { | ||
|  | 		fmt.Println("ecies: plaintext doesn't match message") | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil) | ||
|  | 	if err == nil { | ||
|  | 		fmt.Println("ecies: encryption should not have succeeded") | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | // TestMarshalEncryption validates the encode/decode produces a valid | ||
|  | // ECIES encryption key. | ||
|  | func TestMarshalEncryption(t *testing.T) { | ||
|  | 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	out, err := MarshalPrivate(prv1) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	prv2, err := UnmarshalPrivate(out) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	message := []byte("Hello, world.") | ||
|  | 	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if !bytes.Equal(pt, message) { | ||
|  | 		fmt.Println("ecies: plaintext doesn't match message") | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | type testCase struct { | ||
|  | 	Curve    elliptic.Curve | ||
|  | 	Name     string | ||
|  | 	Expected bool | ||
|  | } | ||
|  | 
 | ||
|  | var testCases = []testCase{ | ||
|  | 	testCase{ | ||
|  | 		Curve:    elliptic.P224(), | ||
|  | 		Name:     "P224", | ||
|  | 		Expected: false, | ||
|  | 	}, | ||
|  | 	testCase{ | ||
|  | 		Curve:    elliptic.P256(), | ||
|  | 		Name:     "P256", | ||
|  | 		Expected: true, | ||
|  | 	}, | ||
|  | 	testCase{ | ||
|  | 		Curve:    elliptic.P384(), | ||
|  | 		Name:     "P384", | ||
|  | 		Expected: true, | ||
|  | 	}, | ||
|  | 	testCase{ | ||
|  | 		Curve:    elliptic.P521(), | ||
|  | 		Name:     "P521", | ||
|  | 		Expected: true, | ||
|  | 	}, | ||
|  | } | ||
|  | 
 | ||
|  | // Test parameter selection for each curve, and that P224 fails automatic | ||
|  | // parameter selection (see README for a discussion of P224). Ensures that | ||
|  | // selecting a set of parameters automatically for the given curve works. | ||
|  | func TestParamSelection(t *testing.T) { | ||
|  | 	for _, c := range testCases { | ||
|  | 		testParamSelection(t, c) | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | func testParamSelection(t *testing.T, c testCase) { | ||
|  | 	params := ParamsFromCurve(c.Curve) | ||
|  | 	if params == nil && c.Expected { | ||
|  | 		fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name) | ||
|  | 		t.FailNow() | ||
|  | 	} else if params != nil && !c.Expected { | ||
|  | 		fmt.Printf("ecies: parameters should be invalid (%s)\n", | ||
|  | 			c.Name) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Printf("%s (%s)\n", err.Error(), c.Name) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Printf("%s (%s)\n", err.Error(), c.Name) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	message := []byte("Hello, world.") | ||
|  | 	ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Printf("%s (%s)\n", err.Error(), c.Name) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Printf("%s (%s)\n", err.Error(), c.Name) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if !bytes.Equal(pt, message) { | ||
|  | 		fmt.Printf("ecies: plaintext doesn't match message (%s)\n", | ||
|  | 			c.Name) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	_, err = prv1.Decrypt(rand.Reader, ct, nil, nil) | ||
|  | 	if err == nil { | ||
|  | 		fmt.Printf("ecies: encryption should not have succeeded (%s)\n", | ||
|  | 			c.Name) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | // Ensure that the basic public key validation in the decryption operation | ||
|  | // works. | ||
|  | func TestBasicKeyValidation(t *testing.T) { | ||
|  | 	badBytes := []byte{0, 1, 5, 6, 7, 8, 9} | ||
|  | 
 | ||
|  | 	prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	message := []byte("Hello, world.") | ||
|  | 	ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil) | ||
|  | 	if err != nil { | ||
|  | 		fmt.Println(err.Error()) | ||
|  | 		t.FailNow() | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for _, b := range badBytes { | ||
|  | 		ct[0] = b | ||
|  | 		_, err := prv.Decrypt(rand.Reader, ct, nil, nil) | ||
|  | 		if err != ErrInvalidPublicKey { | ||
|  | 			fmt.Println("ecies: validated an invalid key") | ||
|  | 			t.FailNow() | ||
|  | 		} | ||
|  | 	} | ||
|  | } |