161 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
		
		
			
		
	
	
			161 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| 
								 | 
							
								package bn256
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// For details of the algorithms used, see "Multiplication and Squaring on
							 | 
						||
| 
								 | 
							
								// Pairing-Friendly Fields, Devegili et al.
							 | 
						||
| 
								 | 
							
								// http://eprint.iacr.org/2006/471.pdf.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import (
							 | 
						||
| 
								 | 
							
									"math/big"
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
							 | 
						||
| 
								 | 
							
								// where ω²=τ.
							 | 
						||
| 
								 | 
							
								type gfP12 struct {
							 | 
						||
| 
								 | 
							
									x, y gfP6 // value is xω + y
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) String() string {
							 | 
						||
| 
								 | 
							
									return "(" + e.x.String() + "," + e.y.String() + ")"
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) Set(a *gfP12) *gfP12 {
							 | 
						||
| 
								 | 
							
									e.x.Set(&a.x)
							 | 
						||
| 
								 | 
							
									e.y.Set(&a.y)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) SetZero() *gfP12 {
							 | 
						||
| 
								 | 
							
									e.x.SetZero()
							 | 
						||
| 
								 | 
							
									e.y.SetZero()
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) SetOne() *gfP12 {
							 | 
						||
| 
								 | 
							
									e.x.SetZero()
							 | 
						||
| 
								 | 
							
									e.y.SetOne()
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) IsZero() bool {
							 | 
						||
| 
								 | 
							
									return e.x.IsZero() && e.y.IsZero()
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) IsOne() bool {
							 | 
						||
| 
								 | 
							
									return e.x.IsZero() && e.y.IsOne()
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
							 | 
						||
| 
								 | 
							
									e.x.Neg(&a.x)
							 | 
						||
| 
								 | 
							
									e.y.Set(&a.y)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) Neg(a *gfP12) *gfP12 {
							 | 
						||
| 
								 | 
							
									e.x.Neg(&a.x)
							 | 
						||
| 
								 | 
							
									e.y.Neg(&a.y)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
							 | 
						||
| 
								 | 
							
								func (e *gfP12) Frobenius(a *gfP12) *gfP12 {
							 | 
						||
| 
								 | 
							
									e.x.Frobenius(&a.x)
							 | 
						||
| 
								 | 
							
									e.y.Frobenius(&a.y)
							 | 
						||
| 
								 | 
							
									e.x.MulScalar(&e.x, xiToPMinus1Over6)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
							 | 
						||
| 
								 | 
							
								func (e *gfP12) FrobeniusP2(a *gfP12) *gfP12 {
							 | 
						||
| 
								 | 
							
									e.x.FrobeniusP2(&a.x)
							 | 
						||
| 
								 | 
							
									e.x.MulGFP(&e.x, xiToPSquaredMinus1Over6)
							 | 
						||
| 
								 | 
							
									e.y.FrobeniusP2(&a.y)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) FrobeniusP4(a *gfP12) *gfP12 {
							 | 
						||
| 
								 | 
							
									e.x.FrobeniusP4(&a.x)
							 | 
						||
| 
								 | 
							
									e.x.MulGFP(&e.x, xiToPSquaredMinus1Over3)
							 | 
						||
| 
								 | 
							
									e.y.FrobeniusP4(&a.y)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) Add(a, b *gfP12) *gfP12 {
							 | 
						||
| 
								 | 
							
									e.x.Add(&a.x, &b.x)
							 | 
						||
| 
								 | 
							
									e.y.Add(&a.y, &b.y)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
							 | 
						||
| 
								 | 
							
									e.x.Sub(&a.x, &b.x)
							 | 
						||
| 
								 | 
							
									e.y.Sub(&a.y, &b.y)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) Mul(a, b *gfP12) *gfP12 {
							 | 
						||
| 
								 | 
							
									tx := (&gfP6{}).Mul(&a.x, &b.y)
							 | 
						||
| 
								 | 
							
									t := (&gfP6{}).Mul(&b.x, &a.y)
							 | 
						||
| 
								 | 
							
									tx.Add(tx, t)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									ty := (&gfP6{}).Mul(&a.y, &b.y)
							 | 
						||
| 
								 | 
							
									t.Mul(&a.x, &b.x).MulTau(t)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									e.x.Set(tx)
							 | 
						||
| 
								 | 
							
									e.y.Add(ty, t)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) MulScalar(a *gfP12, b *gfP6) *gfP12 {
							 | 
						||
| 
								 | 
							
									e.x.Mul(&e.x, b)
							 | 
						||
| 
								 | 
							
									e.y.Mul(&e.y, b)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (c *gfP12) Exp(a *gfP12, power *big.Int) *gfP12 {
							 | 
						||
| 
								 | 
							
									sum := (&gfP12{}).SetOne()
							 | 
						||
| 
								 | 
							
									t := &gfP12{}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for i := power.BitLen() - 1; i >= 0; i-- {
							 | 
						||
| 
								 | 
							
										t.Square(sum)
							 | 
						||
| 
								 | 
							
										if power.Bit(i) != 0 {
							 | 
						||
| 
								 | 
							
											sum.Mul(t, a)
							 | 
						||
| 
								 | 
							
										} else {
							 | 
						||
| 
								 | 
							
											sum.Set(t)
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									c.Set(sum)
							 | 
						||
| 
								 | 
							
									return c
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) Square(a *gfP12) *gfP12 {
							 | 
						||
| 
								 | 
							
									// Complex squaring algorithm
							 | 
						||
| 
								 | 
							
									v0 := (&gfP6{}).Mul(&a.x, &a.y)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									t := (&gfP6{}).MulTau(&a.x)
							 | 
						||
| 
								 | 
							
									t.Add(&a.y, t)
							 | 
						||
| 
								 | 
							
									ty := (&gfP6{}).Add(&a.x, &a.y)
							 | 
						||
| 
								 | 
							
									ty.Mul(ty, t).Sub(ty, v0)
							 | 
						||
| 
								 | 
							
									t.MulTau(v0)
							 | 
						||
| 
								 | 
							
									ty.Sub(ty, t)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									e.x.Add(v0, v0)
							 | 
						||
| 
								 | 
							
									e.y.Set(ty)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								func (e *gfP12) Invert(a *gfP12) *gfP12 {
							 | 
						||
| 
								 | 
							
									// See "Implementing cryptographic pairings", M. Scott, section 3.2.
							 | 
						||
| 
								 | 
							
									// ftp://136.206.11.249/pub/crypto/pairings.pdf
							 | 
						||
| 
								 | 
							
									t1, t2 := &gfP6{}, &gfP6{}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									t1.Square(&a.x)
							 | 
						||
| 
								 | 
							
									t2.Square(&a.y)
							 | 
						||
| 
								 | 
							
									t1.MulTau(t1).Sub(t2, t1)
							 | 
						||
| 
								 | 
							
									t2.Invert(t1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									e.x.Neg(&a.x)
							 | 
						||
| 
								 | 
							
									e.y.Set(&a.y)
							 | 
						||
| 
								 | 
							
									e.MulScalar(e, t2)
							 | 
						||
| 
								 | 
							
									return e
							 | 
						||
| 
								 | 
							
								}
							 |