crypto/secp256k1: fix undefined behavior in BitCurve.Add (#22621)

This commit changes the behavior of BitCurve.Add to be more inline
with btcd. It fixes two different bugs:

1) When adding a point at infinity to another point, the other point
   should be returned. While this is undefined behavior, it is better
   to be more inline with the go standard library.
   Thus (0,0) + (a, b) = (a,b)

2) Adding the same point to itself produced the point at infinity.
   This is incorrect, now doubleJacobian is used to correctly calculate it.
   Thus (a,b) + (a,b) == 2* (a,b) and not (0,0) anymore.

The change also adds a differential fuzzer for Add, testing it against btcd.

Co-authored-by: Felix Lange <fjl@twurst.com>
This commit is contained in:
Marius van der Wijden
2021-05-27 13:30:25 +02:00
committed by GitHub
parent d836ad141e
commit 0703ef62d3
8 changed files with 143 additions and 42 deletions

View File

@ -35,15 +35,8 @@ package secp256k1
import (
"crypto/elliptic"
"math/big"
"unsafe"
)
/*
#include "libsecp256k1/include/secp256k1.h"
extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
*/
import "C"
const (
// number of bits in a big.Word
wordBits = 32 << (uint64(^big.Word(0)) >> 63)
@ -133,7 +126,18 @@ func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.
// Add returns the sum of (x1,y1) and (x2,y2)
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
// If one point is at infinity, return the other point.
// Adding the point at infinity to any point will preserve the other point.
if x1.Sign() == 0 && y1.Sign() == 0 {
return x2, y2
}
if x2.Sign() == 0 && y2.Sign() == 0 {
return x1, y1
}
z := new(big.Int).SetInt64(1)
if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 {
return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z))
}
return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
}
@ -242,41 +246,6 @@ func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int,
return x3, y3, z3
}
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
// Ensure scalar is exactly 32 bytes. We pad always, even if
// scalar is 32 bytes long, to avoid a timing side channel.
if len(scalar) > 32 {
panic("can't handle scalars > 256 bits")
}
// NOTE: potential timing issue
padded := make([]byte, 32)
copy(padded[32-len(scalar):], scalar)
scalar = padded
// Do the multiplication in C, updating point.
point := make([]byte, 64)
readBits(Bx, point[:32])
readBits(By, point[32:])
pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
// Unpack the result and clear temporaries.
x := new(big.Int).SetBytes(point[:32])
y := new(big.Int).SetBytes(point[32:])
for i := range point {
point[i] = 0
}
for i := range padded {
scalar[i] = 0
}
if res != 1 {
return nil, nil
}
return x, y
}
// ScalarBaseMult returns k*G, where G is the base point of the group and k is
// an integer in big-endian form.
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {