crypto/secp256k1: fix undefined behavior in BitCurve.Add (#22621)
This commit changes the behavior of BitCurve.Add to be more inline with btcd. It fixes two different bugs: 1) When adding a point at infinity to another point, the other point should be returned. While this is undefined behavior, it is better to be more inline with the go standard library. Thus (0,0) + (a, b) = (a,b) 2) Adding the same point to itself produced the point at infinity. This is incorrect, now doubleJacobian is used to correctly calculate it. Thus (a,b) + (a,b) == 2* (a,b) and not (0,0) anymore. The change also adds a differential fuzzer for Add, testing it against btcd. Co-authored-by: Felix Lange <fjl@twurst.com>
This commit is contained in:
committed by
GitHub
parent
d836ad141e
commit
0703ef62d3
@ -35,15 +35,8 @@ package secp256k1
|
||||
import (
|
||||
"crypto/elliptic"
|
||||
"math/big"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
/*
|
||||
#include "libsecp256k1/include/secp256k1.h"
|
||||
extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
|
||||
*/
|
||||
import "C"
|
||||
|
||||
const (
|
||||
// number of bits in a big.Word
|
||||
wordBits = 32 << (uint64(^big.Word(0)) >> 63)
|
||||
@ -133,7 +126,18 @@ func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.
|
||||
|
||||
// Add returns the sum of (x1,y1) and (x2,y2)
|
||||
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
||||
// If one point is at infinity, return the other point.
|
||||
// Adding the point at infinity to any point will preserve the other point.
|
||||
if x1.Sign() == 0 && y1.Sign() == 0 {
|
||||
return x2, y2
|
||||
}
|
||||
if x2.Sign() == 0 && y2.Sign() == 0 {
|
||||
return x1, y1
|
||||
}
|
||||
z := new(big.Int).SetInt64(1)
|
||||
if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 {
|
||||
return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z))
|
||||
}
|
||||
return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
|
||||
}
|
||||
|
||||
@ -242,41 +246,6 @@ func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int,
|
||||
return x3, y3, z3
|
||||
}
|
||||
|
||||
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
|
||||
// Ensure scalar is exactly 32 bytes. We pad always, even if
|
||||
// scalar is 32 bytes long, to avoid a timing side channel.
|
||||
if len(scalar) > 32 {
|
||||
panic("can't handle scalars > 256 bits")
|
||||
}
|
||||
// NOTE: potential timing issue
|
||||
padded := make([]byte, 32)
|
||||
copy(padded[32-len(scalar):], scalar)
|
||||
scalar = padded
|
||||
|
||||
// Do the multiplication in C, updating point.
|
||||
point := make([]byte, 64)
|
||||
readBits(Bx, point[:32])
|
||||
readBits(By, point[32:])
|
||||
|
||||
pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
|
||||
scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
|
||||
res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
|
||||
|
||||
// Unpack the result and clear temporaries.
|
||||
x := new(big.Int).SetBytes(point[:32])
|
||||
y := new(big.Int).SetBytes(point[32:])
|
||||
for i := range point {
|
||||
point[i] = 0
|
||||
}
|
||||
for i := range padded {
|
||||
scalar[i] = 0
|
||||
}
|
||||
if res != 1 {
|
||||
return nil, nil
|
||||
}
|
||||
return x, y
|
||||
}
|
||||
|
||||
// ScalarBaseMult returns k*G, where G is the base point of the group and k is
|
||||
// an integer in big-endian form.
|
||||
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
||||
|
Reference in New Issue
Block a user