accounts/abi: Add one-parameter event test case from enriquefynn/unpack_one_arg_event

This commit is contained in:
Javier Peletier
2018-03-05 16:00:03 +01:00
256 changed files with 14988 additions and 4486 deletions

View File

@ -136,11 +136,11 @@ func (abi *ABI) UnmarshalJSON(data []byte) error {
// MethodById looks up a method by the 4-byte id
// returns nil if none found
func (abi *ABI) MethodById(sigdata []byte) *Method {
func (abi *ABI) MethodById(sigdata []byte) (*Method, error) {
for _, method := range abi.Methods {
if bytes.Equal(method.Id(), sigdata[:4]) {
return &method
return &method, nil
}
}
return nil
return nil, fmt.Errorf("no method with id: %#x", sigdata[:4])
}

View File

@ -702,7 +702,11 @@ func TestABI_MethodById(t *testing.T) {
}
for name, m := range abi.Methods {
a := fmt.Sprintf("%v", m)
b := fmt.Sprintf("%v", abi.MethodById(m.Id()))
m2, err := abi.MethodById(m.Id())
if err != nil {
t.Fatalf("Failed to look up ABI method: %v", err)
}
b := fmt.Sprintf("%v", m2)
if a != b {
t.Errorf("Method %v (id %v) not 'findable' by id in ABI", name, common.ToHex(m.Id()))
}

View File

@ -67,6 +67,17 @@ func (arguments Arguments) LengthNonIndexed() int {
return out
}
// NonIndexed returns the arguments with indexed arguments filtered out
func (arguments Arguments) NonIndexed() Arguments {
var ret []Argument
for _, arg := range arguments {
if !arg.Indexed {
ret = append(ret, arg)
}
}
return ret
}
// isTuple returns true for non-atomic constructs, like (uint,uint) or uint[]
func (arguments Arguments) isTuple() bool {
return len(arguments) > 1
@ -74,21 +85,25 @@ func (arguments Arguments) isTuple() bool {
// Unpack performs the operation hexdata -> Go format
func (arguments Arguments) Unpack(v interface{}, data []byte) error {
if arguments.isTuple() {
return arguments.unpackTuple(v, data)
}
return arguments.unpackAtomic(v, data)
}
func (arguments Arguments) unpackTuple(v interface{}, output []byte) error {
// make sure the passed value is arguments pointer
valueOf := reflect.ValueOf(v)
if reflect.Ptr != valueOf.Kind() {
if reflect.Ptr != reflect.ValueOf(v).Kind() {
return fmt.Errorf("abi: Unpack(non-pointer %T)", v)
}
marshalledValues, err := arguments.UnpackValues(data)
if err != nil {
return err
}
if arguments.isTuple() {
return arguments.unpackTuple(v, marshalledValues)
}
return arguments.unpackAtomic(v, marshalledValues)
}
func (arguments Arguments) unpackTuple(v interface{}, marshalledValues []interface{}) error {
var (
value = valueOf.Elem()
value = reflect.ValueOf(v).Elem()
typ = value.Type()
kind = value.Kind()
)
@ -110,30 +125,9 @@ func (arguments Arguments) unpackTuple(v interface{}, output []byte) error {
exists[field] = true
}
}
// `i` counts the nonindexed arguments.
// `j` counts the number of complex types.
// both `i` and `j` are used to to correctly compute `data` offset.
for i, arg := range arguments.NonIndexed() {
i, j := -1, 0
for _, arg := range arguments {
if arg.Indexed {
// can't read, continue
continue
}
i++
marshalledValue, err := toGoType((i+j)*32, arg.Type, output)
if err != nil {
return err
}
if arg.Type.T == ArrayTy {
// combined index ('i' + 'j') need to be adjusted only by size of array, thus
// we need to decrement 'j' because 'i' was incremented
j += arg.Type.Size - 1
}
reflectValue := reflect.ValueOf(marshalledValue)
reflectValue := reflect.ValueOf(marshalledValues[i])
switch kind {
case reflect.Struct:
@ -166,34 +160,72 @@ func (arguments Arguments) unpackTuple(v interface{}, output []byte) error {
}
// unpackAtomic unpacks ( hexdata -> go ) a single value
func (arguments Arguments) unpackAtomic(v interface{}, output []byte) error {
// make sure the passed value is arguments pointer
valueOf := reflect.ValueOf(v)
if reflect.Ptr != valueOf.Kind() {
return fmt.Errorf("abi: Unpack(non-pointer %T)", v)
func (arguments Arguments) unpackAtomic(v interface{}, marshalledValues []interface{}) error {
if len(marshalledValues) != 1 {
return fmt.Errorf("abi: wrong length, expected single value, got %d", len(marshalledValues))
}
arg := arguments[0]
if arg.Indexed {
return fmt.Errorf("abi: attempting to unpack indexed variable into element.")
}
value := valueOf.Elem()
marshalledValue, err := toGoType(0, arg.Type, output)
if err != nil {
return err
}
return set(value, reflect.ValueOf(marshalledValue), arg)
elem := reflect.ValueOf(v).Elem()
reflectValue := reflect.ValueOf(marshalledValues[0])
return set(elem, reflectValue, arguments.NonIndexed()[0])
}
// Unpack performs the operation Go format -> Hexdata
// Computes the full size of an array;
// i.e. counting nested arrays, which count towards size for unpacking.
func getArraySize(arr *Type) int {
size := arr.Size
// Arrays can be nested, with each element being the same size
arr = arr.Elem
for arr.T == ArrayTy {
// Keep multiplying by elem.Size while the elem is an array.
size *= arr.Size
arr = arr.Elem
}
// Now we have the full array size, including its children.
return size
}
// UnpackValues can be used to unpack ABI-encoded hexdata according to the ABI-specification,
// without supplying a struct to unpack into. Instead, this method returns a list containing the
// values. An atomic argument will be a list with one element.
func (arguments Arguments) UnpackValues(data []byte) ([]interface{}, error) {
retval := make([]interface{}, 0, arguments.LengthNonIndexed())
virtualArgs := 0
for index, arg := range arguments.NonIndexed() {
marshalledValue, err := toGoType((index+virtualArgs)*32, arg.Type, data)
if arg.Type.T == ArrayTy {
// If we have a static array, like [3]uint256, these are coded as
// just like uint256,uint256,uint256.
// This means that we need to add two 'virtual' arguments when
// we count the index from now on.
//
// Array values nested multiple levels deep are also encoded inline:
// [2][3]uint256: uint256,uint256,uint256,uint256,uint256,uint256
//
// Calculate the full array size to get the correct offset for the next argument.
// Decrement it by 1, as the normal index increment is still applied.
virtualArgs += getArraySize(&arg.Type) - 1
}
if err != nil {
return nil, err
}
retval = append(retval, marshalledValue)
}
return retval, nil
}
// PackValues performs the operation Go format -> Hexdata
// It is the semantic opposite of UnpackValues
func (arguments Arguments) PackValues(args []interface{}) ([]byte, error) {
return arguments.Pack(args...)
}
// Pack performs the operation Go format -> Hexdata
func (arguments Arguments) Pack(args ...interface{}) ([]byte, error) {
// Make sure arguments match up and pack them
abiArgs := arguments
if len(args) != len(abiArgs) {
return nil, fmt.Errorf("argument count mismatch: %d for %d", len(args), len(abiArgs))
}
// variable input is the output appended at the end of packed
// output. This is used for strings and bytes types input.
var variableInput []byte
@ -207,7 +239,6 @@ func (arguments Arguments) Pack(args ...interface{}) ([]byte, error) {
inputOffset += 32
}
}
var ret []byte
for i, a := range args {
input := abiArgs[i]
@ -216,7 +247,6 @@ func (arguments Arguments) Pack(args ...interface{}) ([]byte, error) {
if err != nil {
return nil, err
}
// check for a slice type (string, bytes, slice)
if input.Type.requiresLengthPrefix() {
// calculate the offset

View File

@ -428,10 +428,23 @@ func (fb *filterBackend) HeaderByNumber(ctx context.Context, block rpc.BlockNumb
}
return fb.bc.GetHeaderByNumber(uint64(block.Int64())), nil
}
func (fb *filterBackend) GetReceipts(ctx context.Context, hash common.Hash) (types.Receipts, error) {
return core.GetBlockReceipts(fb.db, hash, core.GetBlockNumber(fb.db, hash)), nil
}
func (fb *filterBackend) GetLogs(ctx context.Context, hash common.Hash) ([][]*types.Log, error) {
receipts := core.GetBlockReceipts(fb.db, hash, core.GetBlockNumber(fb.db, hash))
if receipts == nil {
return nil, nil
}
logs := make([][]*types.Log, len(receipts))
for i, receipt := range receipts {
logs[i] = receipt.Logs
}
return logs, nil
}
func (fb *filterBackend) SubscribeTxPreEvent(ch chan<- core.TxPreEvent) event.Subscription {
return event.NewSubscription(func(quit <-chan struct{}) error {
<-quit

View File

@ -164,118 +164,147 @@ var bindType = map[Lang]func(kind abi.Type) string{
LangJava: bindTypeJava,
}
// Helper function for the binding generators.
// It reads the unmatched characters after the inner type-match,
// (since the inner type is a prefix of the total type declaration),
// looks for valid arrays (possibly a dynamic one) wrapping the inner type,
// and returns the sizes of these arrays.
//
// Returned array sizes are in the same order as solidity signatures; inner array size first.
// Array sizes may also be "", indicating a dynamic array.
func wrapArray(stringKind string, innerLen int, innerMapping string) (string, []string) {
remainder := stringKind[innerLen:]
//find all the sizes
matches := regexp.MustCompile(`\[(\d*)\]`).FindAllStringSubmatch(remainder, -1)
parts := make([]string, 0, len(matches))
for _, match := range matches {
//get group 1 from the regex match
parts = append(parts, match[1])
}
return innerMapping, parts
}
// Translates the array sizes to a Go-lang declaration of a (nested) array of the inner type.
// Simply returns the inner type if arraySizes is empty.
func arrayBindingGo(inner string, arraySizes []string) string {
out := ""
//prepend all array sizes, from outer (end arraySizes) to inner (start arraySizes)
for i := len(arraySizes) - 1; i >= 0; i-- {
out += "[" + arraySizes[i] + "]"
}
out += inner
return out
}
// bindTypeGo converts a Solidity type to a Go one. Since there is no clear mapping
// from all Solidity types to Go ones (e.g. uint17), those that cannot be exactly
// mapped will use an upscaled type (e.g. *big.Int).
func bindTypeGo(kind abi.Type) string {
stringKind := kind.String()
innerLen, innerMapping := bindUnnestedTypeGo(stringKind)
return arrayBindingGo(wrapArray(stringKind, innerLen, innerMapping))
}
// The inner function of bindTypeGo, this finds the inner type of stringKind.
// (Or just the type itself if it is not an array or slice)
// The length of the matched part is returned, with the the translated type.
func bindUnnestedTypeGo(stringKind string) (int, string) {
switch {
case strings.HasPrefix(stringKind, "address"):
parts := regexp.MustCompile(`address(\[[0-9]*\])?`).FindStringSubmatch(stringKind)
if len(parts) != 2 {
return stringKind
}
return fmt.Sprintf("%scommon.Address", parts[1])
return len("address"), "common.Address"
case strings.HasPrefix(stringKind, "bytes"):
parts := regexp.MustCompile(`bytes([0-9]*)(\[[0-9]*\])?`).FindStringSubmatch(stringKind)
if len(parts) != 3 {
return stringKind
}
return fmt.Sprintf("%s[%s]byte", parts[2], parts[1])
parts := regexp.MustCompile(`bytes([0-9]*)`).FindStringSubmatch(stringKind)
return len(parts[0]), fmt.Sprintf("[%s]byte", parts[1])
case strings.HasPrefix(stringKind, "int") || strings.HasPrefix(stringKind, "uint"):
parts := regexp.MustCompile(`(u)?int([0-9]*)(\[[0-9]*\])?`).FindStringSubmatch(stringKind)
if len(parts) != 4 {
return stringKind
}
parts := regexp.MustCompile(`(u)?int([0-9]*)`).FindStringSubmatch(stringKind)
switch parts[2] {
case "8", "16", "32", "64":
return fmt.Sprintf("%s%sint%s", parts[3], parts[1], parts[2])
return len(parts[0]), fmt.Sprintf("%sint%s", parts[1], parts[2])
}
return fmt.Sprintf("%s*big.Int", parts[3])
return len(parts[0]), "*big.Int"
case strings.HasPrefix(stringKind, "bool") || strings.HasPrefix(stringKind, "string"):
parts := regexp.MustCompile(`([a-z]+)(\[[0-9]*\])?`).FindStringSubmatch(stringKind)
if len(parts) != 3 {
return stringKind
}
return fmt.Sprintf("%s%s", parts[2], parts[1])
case strings.HasPrefix(stringKind, "bool"):
return len("bool"), "bool"
case strings.HasPrefix(stringKind, "string"):
return len("string"), "string"
default:
return stringKind
return len(stringKind), stringKind
}
}
// Translates the array sizes to a Java declaration of a (nested) array of the inner type.
// Simply returns the inner type if arraySizes is empty.
func arrayBindingJava(inner string, arraySizes []string) string {
// Java array type declarations do not include the length.
return inner + strings.Repeat("[]", len(arraySizes))
}
// bindTypeJava converts a Solidity type to a Java one. Since there is no clear mapping
// from all Solidity types to Java ones (e.g. uint17), those that cannot be exactly
// mapped will use an upscaled type (e.g. BigDecimal).
func bindTypeJava(kind abi.Type) string {
stringKind := kind.String()
innerLen, innerMapping := bindUnnestedTypeJava(stringKind)
return arrayBindingJava(wrapArray(stringKind, innerLen, innerMapping))
}
// The inner function of bindTypeJava, this finds the inner type of stringKind.
// (Or just the type itself if it is not an array or slice)
// The length of the matched part is returned, with the the translated type.
func bindUnnestedTypeJava(stringKind string) (int, string) {
switch {
case strings.HasPrefix(stringKind, "address"):
parts := regexp.MustCompile(`address(\[[0-9]*\])?`).FindStringSubmatch(stringKind)
if len(parts) != 2 {
return stringKind
return len(stringKind), stringKind
}
if parts[1] == "" {
return fmt.Sprintf("Address")
return len("address"), "Address"
}
return fmt.Sprintf("Addresses")
return len(parts[0]), "Addresses"
case strings.HasPrefix(stringKind, "bytes"):
parts := regexp.MustCompile(`bytes([0-9]*)(\[[0-9]*\])?`).FindStringSubmatch(stringKind)
if len(parts) != 3 {
return stringKind
parts := regexp.MustCompile(`bytes([0-9]*)`).FindStringSubmatch(stringKind)
if len(parts) != 2 {
return len(stringKind), stringKind
}
if parts[2] != "" {
return "byte[][]"
}
return "byte[]"
return len(parts[0]), "byte[]"
case strings.HasPrefix(stringKind, "int") || strings.HasPrefix(stringKind, "uint"):
parts := regexp.MustCompile(`(u)?int([0-9]*)(\[[0-9]*\])?`).FindStringSubmatch(stringKind)
if len(parts) != 4 {
return stringKind
//Note that uint and int (without digits) are also matched,
// these are size 256, and will translate to BigInt (the default).
parts := regexp.MustCompile(`(u)?int([0-9]*)`).FindStringSubmatch(stringKind)
if len(parts) != 3 {
return len(stringKind), stringKind
}
switch parts[2] {
case "8", "16", "32", "64":
if parts[1] == "" {
if parts[3] == "" {
return fmt.Sprintf("int%s", parts[2])
}
return fmt.Sprintf("int%s[]", parts[2])
}
namedSize := map[string]string{
"8": "byte",
"16": "short",
"32": "int",
"64": "long",
}[parts[2]]
//default to BigInt
if namedSize == "" {
namedSize = "BigInt"
}
if parts[3] == "" {
return fmt.Sprintf("BigInt")
}
return fmt.Sprintf("BigInts")
return len(parts[0]), namedSize
case strings.HasPrefix(stringKind, "bool"):
parts := regexp.MustCompile(`bool(\[[0-9]*\])?`).FindStringSubmatch(stringKind)
if len(parts) != 2 {
return stringKind
}
if parts[1] == "" {
return fmt.Sprintf("bool")
}
return fmt.Sprintf("bool[]")
return len("bool"), "boolean"
case strings.HasPrefix(stringKind, "string"):
parts := regexp.MustCompile(`string(\[[0-9]*\])?`).FindStringSubmatch(stringKind)
if len(parts) != 2 {
return stringKind
}
if parts[1] == "" {
return fmt.Sprintf("String")
}
return fmt.Sprintf("String[]")
return len("string"), "String"
default:
return stringKind
return len(stringKind), stringKind
}
}
@ -325,11 +354,13 @@ func namedTypeJava(javaKind string, solKind abi.Type) string {
return "String"
case "string[]":
return "Strings"
case "bool":
case "boolean":
return "Bool"
case "bool[]":
case "boolean[]":
return "Bools"
case "BigInt":
case "BigInt[]":
return "BigInts"
default:
parts := regexp.MustCompile(`(u)?int([0-9]*)(\[[0-9]*\])?`).FindStringSubmatch(solKind.String())
if len(parts) != 4 {
return javaKind
@ -344,8 +375,6 @@ func namedTypeJava(javaKind string, solKind abi.Type) string {
default:
return javaKind
}
default:
return javaKind
}
}

View File

@ -737,6 +737,72 @@ var bindTests = []struct {
}
`,
},
{
`DeeplyNestedArray`,
`
contract DeeplyNestedArray {
uint64[3][4][5] public deepUint64Array;
function storeDeepUintArray(uint64[3][4][5] arr) public {
deepUint64Array = arr;
}
function retrieveDeepArray() public view returns (uint64[3][4][5]) {
return deepUint64Array;
}
}
`,
`6060604052341561000f57600080fd5b6106438061001e6000396000f300606060405260043610610057576000357c0100000000000000000000000000000000000000000000000000000000900463ffffffff168063344248551461005c5780638ed4573a1461011457806398ed1856146101ab575b600080fd5b341561006757600080fd5b610112600480806107800190600580602002604051908101604052809291906000905b828210156101055783826101800201600480602002604051908101604052809291906000905b828210156100f25783826060020160038060200260405190810160405280929190826003602002808284378201915050505050815260200190600101906100b0565b505050508152602001906001019061008a565b5050505091905050610208565b005b341561011f57600080fd5b61012761021d565b604051808260056000925b8184101561019b578284602002015160046000925b8184101561018d5782846020020151600360200280838360005b8381101561017c578082015181840152602081019050610161565b505050509050019260010192610147565b925050509260010192610132565b9250505091505060405180910390f35b34156101b657600080fd5b6101de6004808035906020019091908035906020019091908035906020019091905050610309565b604051808267ffffffffffffffff1667ffffffffffffffff16815260200191505060405180910390f35b80600090600561021992919061035f565b5050565b6102256103b0565b6000600580602002604051908101604052809291906000905b8282101561030057838260040201600480602002604051908101604052809291906000905b828210156102ed578382016003806020026040519081016040528092919082600380156102d9576020028201916000905b82829054906101000a900467ffffffffffffffff1667ffffffffffffffff16815260200190600801906020826007010492830192600103820291508084116102945790505b505050505081526020019060010190610263565b505050508152602001906001019061023e565b50505050905090565b60008360058110151561031857fe5b600402018260048110151561032957fe5b018160038110151561033757fe5b6004918282040191900660080292509250509054906101000a900467ffffffffffffffff1681565b826005600402810192821561039f579160200282015b8281111561039e5782518290600461038e9291906103df565b5091602001919060040190610375565b5b5090506103ac919061042d565b5090565b610780604051908101604052806005905b6103c9610459565b8152602001906001900390816103c15790505090565b826004810192821561041c579160200282015b8281111561041b5782518290600361040b929190610488565b50916020019190600101906103f2565b5b5090506104299190610536565b5090565b61045691905b8082111561045257600081816104499190610562565b50600401610433565b5090565b90565b610180604051908101604052806004905b6104726105a7565b81526020019060019003908161046a5790505090565b82600380016004900481019282156105255791602002820160005b838211156104ef57835183826101000a81548167ffffffffffffffff021916908367ffffffffffffffff16021790555092602001926008016020816007010492830192600103026104a3565b80156105235782816101000a81549067ffffffffffffffff02191690556008016020816007010492830192600103026104ef565b505b50905061053291906105d9565b5090565b61055f91905b8082111561055b57600081816105529190610610565b5060010161053c565b5090565b90565b50600081816105719190610610565b50600101600081816105839190610610565b50600101600081816105959190610610565b5060010160006105a59190610610565b565b6060604051908101604052806003905b600067ffffffffffffffff168152602001906001900390816105b75790505090565b61060d91905b8082111561060957600081816101000a81549067ffffffffffffffff0219169055506001016105df565b5090565b90565b50600090555600a165627a7a7230582087e5a43f6965ab6ef7a4ff056ab80ed78fd8c15cff57715a1bf34ec76a93661c0029`,
`[{"constant":false,"inputs":[{"name":"arr","type":"uint64[3][4][5]"}],"name":"storeDeepUintArray","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"retrieveDeepArray","outputs":[{"name":"","type":"uint64[3][4][5]"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"name":"","type":"uint256"},{"name":"","type":"uint256"},{"name":"","type":"uint256"}],"name":"deepUint64Array","outputs":[{"name":"","type":"uint64"}],"payable":false,"stateMutability":"view","type":"function"}]`,
`
// Generate a new random account and a funded simulator
key, _ := crypto.GenerateKey()
auth := bind.NewKeyedTransactor(key)
sim := backends.NewSimulatedBackend(core.GenesisAlloc{auth.From: {Balance: big.NewInt(10000000000)}})
//deploy the test contract
_, _, testContract, err := DeployDeeplyNestedArray(auth, sim)
if err != nil {
t.Fatalf("Failed to deploy test contract: %v", err)
}
// Finish deploy.
sim.Commit()
//Create coordinate-filled array, for testing purposes.
testArr := [5][4][3]uint64{}
for i := 0; i < 5; i++ {
testArr[i] = [4][3]uint64{}
for j := 0; j < 4; j++ {
testArr[i][j] = [3]uint64{}
for k := 0; k < 3; k++ {
//pack the coordinates, each array value will be unique, and can be validated easily.
testArr[i][j][k] = uint64(i) << 16 | uint64(j) << 8 | uint64(k)
}
}
}
if _, err := testContract.StoreDeepUintArray(&bind.TransactOpts{
From: auth.From,
Signer: auth.Signer,
}, testArr); err != nil {
t.Fatalf("Failed to store nested array in test contract: %v", err)
}
sim.Commit()
retrievedArr, err := testContract.RetrieveDeepArray(&bind.CallOpts{
From: auth.From,
Pending: false,
})
if err != nil {
t.Fatalf("Failed to retrieve nested array from test contract: %v", err)
}
//quick check to see if contents were copied
// (See accounts/abi/unpack_test.go for more extensive testing)
if retrievedArr[4][3][2] != testArr[4][3][2] {
t.Fatalf("Retrieved value does not match expected value! got: %d, expected: %d. %v", retrievedArr[4][3][2], testArr[4][3][2], err)
}`,
},
}
// Tests that packages generated by the binder can be successfully compiled and

View File

@ -299,6 +299,11 @@ func TestPack(t *testing.T) {
[32]byte{1},
common.Hex2Bytes("0100000000000000000000000000000000000000000000000000000000000000"),
},
{
"uint32[2][3][4]",
[4][3][2]uint32{{{1, 2}, {3, 4}, {5, 6}}, {{7, 8}, {9, 10}, {11, 12}}, {{13, 14}, {15, 16}, {17, 18}}, {{19, 20}, {21, 22}, {23, 24}}},
common.Hex2Bytes("000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000050000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000700000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000009000000000000000000000000000000000000000000000000000000000000000a000000000000000000000000000000000000000000000000000000000000000b000000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000000d000000000000000000000000000000000000000000000000000000000000000e000000000000000000000000000000000000000000000000000000000000000f000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000110000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000000001300000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000015000000000000000000000000000000000000000000000000000000000000001600000000000000000000000000000000000000000000000000000000000000170000000000000000000000000000000000000000000000000000000000000018"),
},
{
"address[]",
[]common.Address{{1}, {2}},

View File

@ -93,15 +93,28 @@ func readFixedBytes(t Type, word []byte) (interface{}, error) {
}
func getFullElemSize(elem *Type) int {
//all other should be counted as 32 (slices have pointers to respective elements)
size := 32
//arrays wrap it, each element being the same size
for elem.T == ArrayTy {
size *= elem.Size
elem = elem.Elem
}
return size
}
// iteratively unpack elements
func forEachUnpack(t Type, output []byte, start, size int) (interface{}, error) {
if size < 0 {
return nil, fmt.Errorf("cannot marshal input to array, size is negative (%d)", size)
}
if start+32*size > len(output) {
return nil, fmt.Errorf("abi: cannot marshal in to go array: offset %d would go over slice boundary (len=%d)", len(output), start+32*size)
}
// this value will become our slice or our array, depending on the type
var refSlice reflect.Value
slice := output[start : start+size*32]
if t.T == SliceTy {
// declare our slice
@ -113,15 +126,20 @@ func forEachUnpack(t Type, output []byte, start, size int) (interface{}, error)
return nil, fmt.Errorf("abi: invalid type in array/slice unpacking stage")
}
for i, j := start, 0; j*32 < len(slice); i, j = i+32, j+1 {
// this corrects the arrangement so that we get all the underlying array values
if t.Elem.T == ArrayTy && j != 0 {
i = start + t.Elem.Size*32*j
}
// Arrays have packed elements, resulting in longer unpack steps.
// Slices have just 32 bytes per element (pointing to the contents).
elemSize := 32
if t.T == ArrayTy {
elemSize = getFullElemSize(t.Elem)
}
for i, j := start, 0; j < size; i, j = i+elemSize, j+1 {
inter, err := toGoType(i, *t.Elem, output)
if err != nil {
return nil, err
}
// append the item to our reflect slice
refSlice.Index(j).Set(reflect.ValueOf(inter))
}
@ -181,16 +199,32 @@ func toGoType(index int, t Type, output []byte) (interface{}, error) {
// interprets a 32 byte slice as an offset and then determines which indice to look to decode the type.
func lengthPrefixPointsTo(index int, output []byte) (start int, length int, err error) {
offset := int(binary.BigEndian.Uint64(output[index+24 : index+32]))
if offset+32 > len(output) {
return 0, 0, fmt.Errorf("abi: cannot marshal in to go slice: offset %d would go over slice boundary (len=%d)", len(output), offset+32)
}
length = int(binary.BigEndian.Uint64(output[offset+24 : offset+32]))
if offset+32+length > len(output) {
return 0, 0, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), offset+32+length)
}
start = offset + 32
bigOffsetEnd := big.NewInt(0).SetBytes(output[index : index+32])
bigOffsetEnd.Add(bigOffsetEnd, common.Big32)
outputLength := big.NewInt(int64(len(output)))
//fmt.Printf("LENGTH PREFIX INFO: \nsize: %v\noffset: %v\nstart: %v\n", length, offset, start)
if bigOffsetEnd.Cmp(outputLength) > 0 {
return 0, 0, fmt.Errorf("abi: cannot marshal in to go slice: offset %v would go over slice boundary (len=%v)", bigOffsetEnd, outputLength)
}
if bigOffsetEnd.BitLen() > 63 {
return 0, 0, fmt.Errorf("abi offset larger than int64: %v", bigOffsetEnd)
}
offsetEnd := int(bigOffsetEnd.Uint64())
lengthBig := big.NewInt(0).SetBytes(output[offsetEnd-32 : offsetEnd])
totalSize := big.NewInt(0)
totalSize.Add(totalSize, bigOffsetEnd)
totalSize.Add(totalSize, lengthBig)
if totalSize.BitLen() > 63 {
return 0, 0, fmt.Errorf("abi length larger than int64: %v", totalSize)
}
if totalSize.Cmp(outputLength) > 0 {
return 0, 0, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %v require %v", outputLength, totalSize)
}
start = int(bigOffsetEnd.Uint64())
length = int(lengthBig.Uint64())
return
}

View File

@ -130,7 +130,7 @@ var unpackTests = []unpackTest{
{
def: `[{"type": "bytes32"}]`,
enc: "0100000000000000000000000000000000000000000000000000000000000000",
want: common.HexToHash("0100000000000000000000000000000000000000000000000000000000000000"),
want: [32]byte{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
},
{
def: `[{"type": "function"}]`,
@ -189,6 +189,11 @@ var unpackTests = []unpackTest{
enc: "00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000002",
want: [2]uint32{1, 2},
},
{
def: `[{"type": "uint32[2][3][4]"}]`,
enc: "000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000050000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000700000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000009000000000000000000000000000000000000000000000000000000000000000a000000000000000000000000000000000000000000000000000000000000000b000000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000000d000000000000000000000000000000000000000000000000000000000000000e000000000000000000000000000000000000000000000000000000000000000f000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000110000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000000001300000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000015000000000000000000000000000000000000000000000000000000000000001600000000000000000000000000000000000000000000000000000000000000170000000000000000000000000000000000000000000000000000000000000018",
want: [4][3][2]uint32{{{1, 2}, {3, 4}, {5, 6}}, {{7, 8}, {9, 10}, {11, 12}}, {{13, 14}, {15, 16}, {17, 18}}, {{19, 20}, {21, 22}, {23, 24}}},
},
{
def: `[{"type": "uint64[]"}]`,
enc: "0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000002",
@ -435,6 +440,46 @@ func TestMultiReturnWithArray(t *testing.T) {
}
}
func TestMultiReturnWithDeeplyNestedArray(t *testing.T) {
// Similar to TestMultiReturnWithArray, but with a special case in mind:
// values of nested static arrays count towards the size as well, and any element following
// after such nested array argument should be read with the correct offset,
// so that it does not read content from the previous array argument.
const definition = `[{"name" : "multi", "outputs": [{"type": "uint64[3][2][4]"}, {"type": "uint64"}]}]`
abi, err := JSON(strings.NewReader(definition))
if err != nil {
t.Fatal(err)
}
buff := new(bytes.Buffer)
// construct the test array, each 3 char element is joined with 61 '0' chars,
// to from the ((3 + 61) * 0.5) = 32 byte elements in the array.
buff.Write(common.Hex2Bytes(strings.Join([]string{
"", //empty, to apply the 61-char separator to the first element as well.
"111", "112", "113", "121", "122", "123",
"211", "212", "213", "221", "222", "223",
"311", "312", "313", "321", "322", "323",
"411", "412", "413", "421", "422", "423",
}, "0000000000000000000000000000000000000000000000000000000000000")))
buff.Write(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000009876"))
ret1, ret1Exp := new([4][2][3]uint64), [4][2][3]uint64{
{{0x111, 0x112, 0x113}, {0x121, 0x122, 0x123}},
{{0x211, 0x212, 0x213}, {0x221, 0x222, 0x223}},
{{0x311, 0x312, 0x313}, {0x321, 0x322, 0x323}},
{{0x411, 0x412, 0x413}, {0x421, 0x422, 0x423}},
}
ret2, ret2Exp := new(uint64), uint64(0x9876)
if err := abi.Unpack(&[]interface{}{ret1, ret2}, "multi", buff.Bytes()); err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(*ret1, ret1Exp) {
t.Error("array result", *ret1, "!= Expected", ret1Exp)
}
if *ret2 != ret2Exp {
t.Error("int result", *ret2, "!= Expected", ret2Exp)
}
}
func TestUnmarshal(t *testing.T) {
const definition = `[
{ "name" : "int", "constant" : false, "outputs": [ { "type": "uint256" } ] },
@ -683,3 +728,73 @@ func TestUnmarshal(t *testing.T) {
t.Fatal("expected error:", err)
}
}
func TestOOMMaliciousInput(t *testing.T) {
oomTests := []unpackTest{
{
def: `[{"type": "uint8[]"}]`,
enc: "0000000000000000000000000000000000000000000000000000000000000020" + // offset
"0000000000000000000000000000000000000000000000000000000000000003" + // num elems
"0000000000000000000000000000000000000000000000000000000000000001" + // elem 1
"0000000000000000000000000000000000000000000000000000000000000002", // elem 2
},
{ // Length larger than 64 bits
def: `[{"type": "uint8[]"}]`,
enc: "0000000000000000000000000000000000000000000000000000000000000020" + // offset
"00ffffffffffffffffffffffffffffffffffffffffffffff0000000000000002" + // num elems
"0000000000000000000000000000000000000000000000000000000000000001" + // elem 1
"0000000000000000000000000000000000000000000000000000000000000002", // elem 2
},
{ // Offset very large (over 64 bits)
def: `[{"type": "uint8[]"}]`,
enc: "00ffffffffffffffffffffffffffffffffffffffffffffff0000000000000020" + // offset
"0000000000000000000000000000000000000000000000000000000000000002" + // num elems
"0000000000000000000000000000000000000000000000000000000000000001" + // elem 1
"0000000000000000000000000000000000000000000000000000000000000002", // elem 2
},
{ // Offset very large (below 64 bits)
def: `[{"type": "uint8[]"}]`,
enc: "0000000000000000000000000000000000000000000000007ffffffffff00020" + // offset
"0000000000000000000000000000000000000000000000000000000000000002" + // num elems
"0000000000000000000000000000000000000000000000000000000000000001" + // elem 1
"0000000000000000000000000000000000000000000000000000000000000002", // elem 2
},
{ // Offset negative (as 64 bit)
def: `[{"type": "uint8[]"}]`,
enc: "000000000000000000000000000000000000000000000000f000000000000020" + // offset
"0000000000000000000000000000000000000000000000000000000000000002" + // num elems
"0000000000000000000000000000000000000000000000000000000000000001" + // elem 1
"0000000000000000000000000000000000000000000000000000000000000002", // elem 2
},
{ // Negative length
def: `[{"type": "uint8[]"}]`,
enc: "0000000000000000000000000000000000000000000000000000000000000020" + // offset
"000000000000000000000000000000000000000000000000f000000000000002" + // num elems
"0000000000000000000000000000000000000000000000000000000000000001" + // elem 1
"0000000000000000000000000000000000000000000000000000000000000002", // elem 2
},
{ // Very large length
def: `[{"type": "uint8[]"}]`,
enc: "0000000000000000000000000000000000000000000000000000000000000020" + // offset
"0000000000000000000000000000000000000000000000007fffffffff000002" + // num elems
"0000000000000000000000000000000000000000000000000000000000000001" + // elem 1
"0000000000000000000000000000000000000000000000000000000000000002", // elem 2
},
}
for i, test := range oomTests {
def := fmt.Sprintf(`[{ "name" : "method", "outputs": %s}]`, test.def)
abi, err := JSON(strings.NewReader(def))
if err != nil {
t.Fatalf("invalid ABI definition %s: %v", def, err)
}
encb, err := hex.DecodeString(test.enc)
if err != nil {
t.Fatalf("invalid hex: %s" + test.enc)
}
_, err = abi.Methods["method"].Outputs.UnpackValues(encb)
if err == nil {
t.Fatalf("Expected error on malicious input, test %d", i)
}
}
}