core: add global (soft) limits on the pending transactions

This commit is contained in:
Péter Szilágyi
2016-10-14 15:32:06 +03:00
parent f63c6c008f
commit 182d9cb752
2 changed files with 150 additions and 5 deletions

View File

@ -618,6 +618,96 @@ func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some hard threshold, the higher transactions are dropped to prevent DOS
// attacks.
func TestTransactionPendingGlobalLimiting(t *testing.T) {
// Reduce the queue limits to shorten test time
defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal)
maxPendingTotal = minPendingPerAccount * 10
// Create the pool to test the limit enforcement with
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
pool.resetState()
// Create a number of test accounts and fund them
state, _ := pool.currentState()
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := types.Transactions{}
for _, key := range keys {
addr := crypto.PubkeyToAddress(key.PublicKey)
for j := 0; j < int(maxPendingTotal)/len(keys)*2; j++ {
txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
nonces[addr]++
}
}
// Import the batch and verify that limits have been enforced
pool.AddBatch(txs)
pending := 0
for _, list := range pool.pending {
pending += list.Len()
}
if pending > int(maxPendingTotal) {
t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, maxPendingTotal)
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some hard threshold, if they are under the minimum guaranteed slot count then
// the transactions are still kept.
func TestTransactionPendingMinimumAllowance(t *testing.T) {
// Reduce the queue limits to shorten test time
defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal)
maxPendingTotal = 0
// Create the pool to test the limit enforcement with
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool := NewTxPool(testChainConfig(), new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
pool.resetState()
// Create a number of test accounts and fund them
state, _ := pool.currentState()
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := types.Transactions{}
for _, key := range keys {
addr := crypto.PubkeyToAddress(key.PublicKey)
for j := 0; j < int(minPendingPerAccount)*2; j++ {
txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
nonces[addr]++
}
}
// Import the batch and verify that limits have been enforced
pool.AddBatch(txs)
for addr, list := range pool.pending {
if list.Len() != int(minPendingPerAccount) {
t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), minPendingPerAccount)
}
}
}
// Benchmarks the speed of validating the contents of the pending queue of the
// transaction pool.
func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) }