les: move client pool to les/vflux/server (#22495)

* les: move client pool to les/vflux/server

* les/vflux/server: un-expose NodeBalance, remove unused fn, fix bugs

* tests/fuzzers/vflux: add ClientPool fuzzer

* les/vflux/server: fixed balance tests

* les: rebase fix

* les/vflux/server: fixed more bugs

* les/vflux/server: unexported NodeStateMachine fields and flags

* les/vflux/server: unexport all internal components and functions

* les/vflux/server: fixed priorityPool test

* les/vflux/server: polish balance

* les/vflux/server: fixed mutex locking error

* les/vflux/server: priorityPool bug fixed

* common/prque: make Prque wrap-around priority handling optional

* les/vflux/server: rename funcs, small optimizations

* les/vflux/server: fixed timeUntil

* les/vflux/server: separated balance.posValue and negValue

* les/vflux/server: polish setup

* les/vflux/server: enforce capacity curve monotonicity

* les/vflux/server: simplified requestCapacity

* les/vflux/server: requestCapacity with target range, no iterations in SetCapacity

* les/vflux/server: minor changes

* les/vflux/server: moved default factors to balanceTracker

* les/vflux/server: set inactiveFlag in priorityPool

* les/vflux/server: moved related metrics to vfs package

* les/vflux/client: make priorityPool temp state logic cleaner

* les/vflux/server: changed log.Crit to log.Error

* add vflux fuzzer to oss-fuzz

Co-authored-by: rjl493456442 <garyrong0905@gmail.com>
This commit is contained in:
Felföldi Zsolt
2021-04-06 20:42:50 +02:00
committed by GitHub
parent e275b1a293
commit 2d89fe0883
27 changed files with 1987 additions and 1545 deletions

View File

@ -18,7 +18,6 @@ package server
import (
"math"
"reflect"
"sync"
"time"
@ -33,36 +32,7 @@ const (
lazyQueueRefresh = time.Second * 10 // refresh period of the active queue
)
// PriorityPoolSetup contains node state flags and fields used by PriorityPool
// Note: ActiveFlag and InactiveFlag can be controlled both externally and by the pool,
// see PriorityPool description for details.
type PriorityPoolSetup struct {
// controlled by PriorityPool
ActiveFlag, InactiveFlag nodestate.Flags
CapacityField, ppNodeInfoField nodestate.Field
// external connections
updateFlag nodestate.Flags
priorityField nodestate.Field
}
// NewPriorityPoolSetup creates a new PriorityPoolSetup and initializes the fields
// and flags controlled by PriorityPool
func NewPriorityPoolSetup(setup *nodestate.Setup) PriorityPoolSetup {
return PriorityPoolSetup{
ActiveFlag: setup.NewFlag("active"),
InactiveFlag: setup.NewFlag("inactive"),
CapacityField: setup.NewField("capacity", reflect.TypeOf(uint64(0))),
ppNodeInfoField: setup.NewField("ppNodeInfo", reflect.TypeOf(&ppNodeInfo{})),
}
}
// Connect sets the fields and flags used by PriorityPool as an input
func (pps *PriorityPoolSetup) Connect(priorityField nodestate.Field, updateFlag nodestate.Flags) {
pps.priorityField = priorityField // should implement nodePriority
pps.updateFlag = updateFlag // triggers an immediate priority update
}
// PriorityPool handles a set of nodes where each node has a capacity (a scalar value)
// priorityPool handles a set of nodes where each node has a capacity (a scalar value)
// and a priority (which can change over time and can also depend on the capacity).
// A node is active if it has at least the necessary minimal amount of capacity while
// inactive nodes have 0 capacity (values between 0 and the minimum are not allowed).
@ -79,70 +49,70 @@ func (pps *PriorityPoolSetup) Connect(priorityField nodestate.Field, updateFlag
// This time bias can be interpreted as minimum expected active time at the given
// capacity (if the threshold priority stays the same).
//
// Nodes in the pool always have either InactiveFlag or ActiveFlag set. A new node is
// added to the pool by externally setting InactiveFlag. PriorityPool can switch a node
// between InactiveFlag and ActiveFlag at any time. Nodes can be removed from the pool
// by externally resetting both flags. ActiveFlag should not be set externally.
// Nodes in the pool always have either inactiveFlag or activeFlag set. A new node is
// added to the pool by externally setting inactiveFlag. priorityPool can switch a node
// between inactiveFlag and activeFlag at any time. Nodes can be removed from the pool
// by externally resetting both flags. activeFlag should not be set externally.
//
// The highest priority nodes in "inactive" state are moved to "active" state as soon as
// the minimum capacity can be granted for them. The capacity of lower priority active
// nodes is reduced or they are demoted to "inactive" state if their priority is
// insufficient even at minimal capacity.
type PriorityPool struct {
PriorityPoolSetup
ns *nodestate.NodeStateMachine
clock mclock.Clock
lock sync.Mutex
activeQueue *prque.LazyQueue
inactiveQueue *prque.Prque
changed []*ppNodeInfo
activeCount, activeCap uint64
maxCount, maxCap uint64
minCap uint64
activeBias time.Duration
capacityStepDiv uint64
type priorityPool struct {
setup *serverSetup
ns *nodestate.NodeStateMachine
clock mclock.Clock
lock sync.Mutex
inactiveQueue *prque.Prque
maxCount, maxCap uint64
minCap uint64
activeBias time.Duration
capacityStepDiv, fineStepDiv uint64
cachedCurve *CapacityCurve
cachedCurve *capacityCurve
ccUpdatedAt mclock.AbsTime
ccUpdateForced bool
tempState []*ppNodeInfo // nodes currently in temporary state
// the following fields represent the temporary state if tempState is not empty
activeCount, activeCap uint64
activeQueue *prque.LazyQueue
}
// nodePriority interface provides current and estimated future priorities on demand
type nodePriority interface {
// Priority should return the current priority of the node (higher is better)
Priority(cap uint64) int64
// EstMinPriority should return a lower estimate for the minimum of the node priority
// value starting from the current moment until the given time. If the priority goes
// under the returned estimate before the specified moment then it is the caller's
// responsibility to signal with updateFlag.
EstimatePriority(cap uint64, addBalance int64, future, bias time.Duration, update bool) int64
}
// ppNodeInfo is the internal node descriptor of PriorityPool
// ppNodeInfo is the internal node descriptor of priorityPool
type ppNodeInfo struct {
nodePriority nodePriority
node *enode.Node
connected bool
capacity, origCap uint64
bias time.Duration
forced, changed bool
capacity uint64 // only changed when temporary state is committed
activeIndex, inactiveIndex int
tempState bool // should only be true while the priorityPool lock is held
tempCapacity uint64 // equals capacity when tempState is false
// the following fields only affect the temporary state and they are set to their
// default value when entering the temp state
minTarget, stepDiv uint64
bias time.Duration
}
// NewPriorityPool creates a new PriorityPool
func NewPriorityPool(ns *nodestate.NodeStateMachine, setup PriorityPoolSetup, clock mclock.Clock, minCap uint64, activeBias time.Duration, capacityStepDiv uint64) *PriorityPool {
pp := &PriorityPool{
ns: ns,
PriorityPoolSetup: setup,
clock: clock,
inactiveQueue: prque.New(inactiveSetIndex),
minCap: minCap,
activeBias: activeBias,
capacityStepDiv: capacityStepDiv,
// newPriorityPool creates a new priorityPool
func newPriorityPool(ns *nodestate.NodeStateMachine, setup *serverSetup, clock mclock.Clock, minCap uint64, activeBias time.Duration, capacityStepDiv, fineStepDiv uint64) *priorityPool {
pp := &priorityPool{
setup: setup,
ns: ns,
clock: clock,
inactiveQueue: prque.New(inactiveSetIndex),
minCap: minCap,
activeBias: activeBias,
capacityStepDiv: capacityStepDiv,
fineStepDiv: fineStepDiv,
}
if pp.activeBias < time.Duration(1) {
pp.activeBias = time.Duration(1)
}
pp.activeQueue = prque.NewLazyQueue(activeSetIndex, activePriority, pp.activeMaxPriority, clock, lazyQueueRefresh)
ns.SubscribeField(pp.priorityField, func(node *enode.Node, state nodestate.Flags, oldValue, newValue interface{}) {
ns.SubscribeField(pp.setup.balanceField, func(node *enode.Node, state nodestate.Flags, oldValue, newValue interface{}) {
if newValue != nil {
c := &ppNodeInfo{
node: node,
@ -150,18 +120,19 @@ func NewPriorityPool(ns *nodestate.NodeStateMachine, setup PriorityPoolSetup, cl
activeIndex: -1,
inactiveIndex: -1,
}
ns.SetFieldSub(node, pp.ppNodeInfoField, c)
ns.SetFieldSub(node, pp.setup.queueField, c)
ns.SetStateSub(node, setup.inactiveFlag, nodestate.Flags{}, 0)
} else {
ns.SetStateSub(node, nodestate.Flags{}, pp.ActiveFlag.Or(pp.InactiveFlag), 0)
if n, _ := pp.ns.GetField(node, pp.ppNodeInfoField).(*ppNodeInfo); n != nil {
ns.SetStateSub(node, nodestate.Flags{}, pp.setup.activeFlag.Or(pp.setup.inactiveFlag), 0)
if n, _ := pp.ns.GetField(node, pp.setup.queueField).(*ppNodeInfo); n != nil {
pp.disconnectedNode(n)
}
ns.SetFieldSub(node, pp.CapacityField, nil)
ns.SetFieldSub(node, pp.ppNodeInfoField, nil)
ns.SetFieldSub(node, pp.setup.capacityField, nil)
ns.SetFieldSub(node, pp.setup.queueField, nil)
}
})
ns.SubscribeState(pp.ActiveFlag.Or(pp.InactiveFlag), func(node *enode.Node, oldState, newState nodestate.Flags) {
if c, _ := pp.ns.GetField(node, pp.ppNodeInfoField).(*ppNodeInfo); c != nil {
ns.SubscribeState(pp.setup.activeFlag.Or(pp.setup.inactiveFlag), func(node *enode.Node, oldState, newState nodestate.Flags) {
if c, _ := pp.ns.GetField(node, pp.setup.queueField).(*ppNodeInfo); c != nil {
if oldState.IsEmpty() {
pp.connectedNode(c)
}
@ -170,7 +141,7 @@ func NewPriorityPool(ns *nodestate.NodeStateMachine, setup PriorityPoolSetup, cl
}
}
})
ns.SubscribeState(pp.updateFlag, func(node *enode.Node, oldState, newState nodestate.Flags) {
ns.SubscribeState(pp.setup.updateFlag, func(node *enode.Node, oldState, newState nodestate.Flags) {
if !newState.IsEmpty() {
pp.updatePriority(node)
}
@ -178,18 +149,12 @@ func NewPriorityPool(ns *nodestate.NodeStateMachine, setup PriorityPoolSetup, cl
return pp
}
// RequestCapacity checks whether changing the capacity of a node to the given target
// is possible (bias is applied in favor of other active nodes if the target is higher
// than the current capacity).
// If setCap is true then it also performs the change if possible. The function returns
// the minimum priority needed to do the change and whether it is currently allowed.
// If setCap and allowed are both true then the caller can assume that the change was
// successful.
// Note: priorityField should always be set before calling RequestCapacity. If setCap
// is false then both InactiveFlag and ActiveFlag can be unset and they are not changed
// by this function call either.
// Note 2: this function should run inside a NodeStateMachine operation
func (pp *PriorityPool) RequestCapacity(node *enode.Node, targetCap uint64, bias time.Duration, setCap bool) (minPriority int64, allowed bool) {
// requestCapacity tries to set the capacity of a connected node to the highest possible
// value inside the given target range. If maxTarget is not reachable then the capacity is
// iteratively reduced in fine steps based on the fineStepDiv parameter until minTarget is reached.
// The function returns the new capacity if successful and the original capacity otherwise.
// Note: this function should run inside a NodeStateMachine operation
func (pp *priorityPool) requestCapacity(node *enode.Node, minTarget, maxTarget uint64, bias time.Duration) uint64 {
pp.lock.Lock()
pp.activeQueue.Refresh()
var updates []capUpdate
@ -198,39 +163,37 @@ func (pp *PriorityPool) RequestCapacity(node *enode.Node, targetCap uint64, bias
pp.updateFlags(updates)
}()
if targetCap < pp.minCap {
targetCap = pp.minCap
if minTarget < pp.minCap {
minTarget = pp.minCap
}
if maxTarget < minTarget {
maxTarget = minTarget
}
if bias < pp.activeBias {
bias = pp.activeBias
}
c, _ := pp.ns.GetField(node, pp.ppNodeInfoField).(*ppNodeInfo)
c, _ := pp.ns.GetField(node, pp.setup.queueField).(*ppNodeInfo)
if c == nil {
log.Error("RequestCapacity called for unknown node", "id", node.ID())
return math.MaxInt64, false
log.Error("requestCapacity called for unknown node", "id", node.ID())
return 0
}
var priority int64
if targetCap > c.capacity {
priority = c.nodePriority.EstimatePriority(targetCap, 0, 0, bias, false)
} else {
priority = c.nodePriority.Priority(targetCap)
pp.setTempState(c)
if maxTarget > c.capacity {
c.bias = bias
c.stepDiv = pp.fineStepDiv
}
pp.markForChange(c)
pp.setCapacity(c, targetCap)
c.forced = true
pp.setTempCapacity(c, maxTarget)
c.minTarget = minTarget
pp.activeQueue.Remove(c.activeIndex)
pp.inactiveQueue.Remove(c.inactiveIndex)
pp.activeQueue.Push(c)
_, minPriority = pp.enforceLimits()
// if capacity update is possible now then minPriority == math.MinInt64
// if it is not possible at all then minPriority == math.MaxInt64
allowed = priority > minPriority
updates = pp.finalizeChanges(setCap && allowed)
return
pp.enforceLimits()
updates = pp.finalizeChanges(c.tempCapacity >= minTarget && c.tempCapacity <= maxTarget && c.tempCapacity != c.capacity)
return c.capacity
}
// SetLimits sets the maximum number and total capacity of simultaneously active nodes
func (pp *PriorityPool) SetLimits(maxCount, maxCap uint64) {
func (pp *priorityPool) SetLimits(maxCount, maxCap uint64) {
pp.lock.Lock()
pp.activeQueue.Refresh()
var updates []capUpdate
@ -247,27 +210,38 @@ func (pp *PriorityPool) SetLimits(maxCount, maxCap uint64) {
updates = pp.finalizeChanges(true)
}
if inc {
updates = pp.tryActivate()
updates = append(updates, pp.tryActivate(false)...)
}
}
// SetActiveBias sets the bias applied when trying to activate inactive nodes
func (pp *PriorityPool) SetActiveBias(bias time.Duration) {
// setActiveBias sets the bias applied when trying to activate inactive nodes
func (pp *priorityPool) setActiveBias(bias time.Duration) {
pp.lock.Lock()
defer pp.lock.Unlock()
pp.activeBias = bias
pp.tryActivate()
if pp.activeBias < time.Duration(1) {
pp.activeBias = time.Duration(1)
}
updates := pp.tryActivate(false)
pp.lock.Unlock()
pp.ns.Operation(func() { pp.updateFlags(updates) })
}
// Active returns the number and total capacity of currently active nodes
func (pp *PriorityPool) Active() (uint64, uint64) {
func (pp *priorityPool) Active() (uint64, uint64) {
pp.lock.Lock()
defer pp.lock.Unlock()
return pp.activeCount, pp.activeCap
}
// Limits returns the maximum allowed number and total capacity of active nodes
func (pp *priorityPool) Limits() (uint64, uint64) {
pp.lock.Lock()
defer pp.lock.Unlock()
return pp.maxCount, pp.maxCap
}
// inactiveSetIndex callback updates ppNodeInfo item index in inactiveQueue
func inactiveSetIndex(a interface{}, index int) {
a.(*ppNodeInfo).inactiveIndex = index
@ -290,37 +264,31 @@ func invertPriority(p int64) int64 {
// activePriority callback returns actual priority of ppNodeInfo item in activeQueue
func activePriority(a interface{}) int64 {
c := a.(*ppNodeInfo)
if c.forced {
return math.MinInt64
}
if c.bias == 0 {
return invertPriority(c.nodePriority.Priority(c.capacity))
return invertPriority(c.nodePriority.priority(c.tempCapacity))
} else {
return invertPriority(c.nodePriority.EstimatePriority(c.capacity, 0, 0, c.bias, true))
return invertPriority(c.nodePriority.estimatePriority(c.tempCapacity, 0, 0, c.bias, true))
}
}
// activeMaxPriority callback returns estimated maximum priority of ppNodeInfo item in activeQueue
func (pp *PriorityPool) activeMaxPriority(a interface{}, until mclock.AbsTime) int64 {
func (pp *priorityPool) activeMaxPriority(a interface{}, until mclock.AbsTime) int64 {
c := a.(*ppNodeInfo)
if c.forced {
return math.MinInt64
}
future := time.Duration(until - pp.clock.Now())
if future < 0 {
future = 0
}
return invertPriority(c.nodePriority.EstimatePriority(c.capacity, 0, future, c.bias, false))
return invertPriority(c.nodePriority.estimatePriority(c.tempCapacity, 0, future, c.bias, false))
}
// inactivePriority callback returns actual priority of ppNodeInfo item in inactiveQueue
func (pp *PriorityPool) inactivePriority(p *ppNodeInfo) int64 {
return p.nodePriority.Priority(pp.minCap)
func (pp *priorityPool) inactivePriority(p *ppNodeInfo) int64 {
return p.nodePriority.priority(pp.minCap)
}
// connectedNode is called when a new node has been added to the pool (InactiveFlag set)
// connectedNode is called when a new node has been added to the pool (inactiveFlag set)
// Note: this function should run inside a NodeStateMachine operation
func (pp *PriorityPool) connectedNode(c *ppNodeInfo) {
func (pp *priorityPool) connectedNode(c *ppNodeInfo) {
pp.lock.Lock()
pp.activeQueue.Refresh()
var updates []capUpdate
@ -334,13 +302,13 @@ func (pp *PriorityPool) connectedNode(c *ppNodeInfo) {
}
c.connected = true
pp.inactiveQueue.Push(c, pp.inactivePriority(c))
updates = pp.tryActivate()
updates = pp.tryActivate(false)
}
// disconnectedNode is called when a node has been removed from the pool (both InactiveFlag
// and ActiveFlag reset)
// disconnectedNode is called when a node has been removed from the pool (both inactiveFlag
// and activeFlag reset)
// Note: this function should run inside a NodeStateMachine operation
func (pp *PriorityPool) disconnectedNode(c *ppNodeInfo) {
func (pp *priorityPool) disconnectedNode(c *ppNodeInfo) {
pp.lock.Lock()
pp.activeQueue.Refresh()
var updates []capUpdate
@ -356,42 +324,51 @@ func (pp *PriorityPool) disconnectedNode(c *ppNodeInfo) {
pp.activeQueue.Remove(c.activeIndex)
pp.inactiveQueue.Remove(c.inactiveIndex)
if c.capacity != 0 {
pp.setCapacity(c, 0)
updates = pp.tryActivate()
pp.setTempState(c)
pp.setTempCapacity(c, 0)
updates = pp.tryActivate(true)
}
}
// markForChange internally puts a node in a temporary state that can either be reverted
// setTempState internally puts a node in a temporary state that can either be reverted
// or confirmed later. This temporary state allows changing the capacity of a node and
// moving it between the active and inactive queue. ActiveFlag/InactiveFlag and
// CapacityField are not changed while the changes are still temporary.
func (pp *PriorityPool) markForChange(c *ppNodeInfo) {
if c.changed {
// moving it between the active and inactive queue. activeFlag/inactiveFlag and
// capacityField are not changed while the changes are still temporary.
func (pp *priorityPool) setTempState(c *ppNodeInfo) {
if c.tempState {
return
}
c.changed = true
c.origCap = c.capacity
pp.changed = append(pp.changed, c)
c.tempState = true
if c.tempCapacity != c.capacity { // should never happen
log.Error("tempCapacity != capacity when entering tempState")
}
c.minTarget = pp.minCap
c.stepDiv = pp.capacityStepDiv
pp.tempState = append(pp.tempState, c)
}
// setCapacity changes the capacity of a node and adjusts activeCap and activeCount
// accordingly. Note that this change is performed in the temporary state so it should
// be called after markForChange and before finalizeChanges.
func (pp *PriorityPool) setCapacity(n *ppNodeInfo, cap uint64) {
pp.activeCap += cap - n.capacity
if n.capacity == 0 {
// setTempCapacity changes the capacity of a node in the temporary state and adjusts
// activeCap and activeCount accordingly. Since this change is performed in the temporary
// state it should be called after setTempState and before finalizeChanges.
func (pp *priorityPool) setTempCapacity(n *ppNodeInfo, cap uint64) {
if !n.tempState { // should never happen
log.Error("Node is not in temporary state")
return
}
pp.activeCap += cap - n.tempCapacity
if n.tempCapacity == 0 {
pp.activeCount++
}
if cap == 0 {
pp.activeCount--
}
n.capacity = cap
n.tempCapacity = cap
}
// enforceLimits enforces active node count and total capacity limits. It returns the
// lowest active node priority. Note that this function is performed on the temporary
// internal state.
func (pp *PriorityPool) enforceLimits() (*ppNodeInfo, int64) {
func (pp *priorityPool) enforceLimits() (*ppNodeInfo, int64) {
if pp.activeCap <= pp.maxCap && pp.activeCount <= pp.maxCount {
return nil, math.MinInt64
}
@ -401,16 +378,19 @@ func (pp *PriorityPool) enforceLimits() (*ppNodeInfo, int64) {
)
pp.activeQueue.MultiPop(func(data interface{}, priority int64) bool {
c = data.(*ppNodeInfo)
pp.markForChange(c)
pp.setTempState(c)
maxActivePriority = priority
if c.capacity == pp.minCap || pp.activeCount > pp.maxCount {
pp.setCapacity(c, 0)
if c.tempCapacity == c.minTarget || pp.activeCount > pp.maxCount {
pp.setTempCapacity(c, 0)
} else {
sub := c.capacity / pp.capacityStepDiv
if c.capacity-sub < pp.minCap {
sub = c.capacity - pp.minCap
sub := c.tempCapacity / c.stepDiv
if sub == 0 {
sub = 1
}
pp.setCapacity(c, c.capacity-sub)
if c.tempCapacity-sub < c.minTarget {
sub = c.tempCapacity - c.minTarget
}
pp.setTempCapacity(c, c.tempCapacity-sub)
pp.activeQueue.Push(c)
}
return pp.activeCap > pp.maxCap || pp.activeCount > pp.maxCount
@ -421,71 +401,74 @@ func (pp *PriorityPool) enforceLimits() (*ppNodeInfo, int64) {
// finalizeChanges either commits or reverts temporary changes. The necessary capacity
// field and according flag updates are not performed here but returned in a list because
// they should be performed while the mutex is not held.
func (pp *PriorityPool) finalizeChanges(commit bool) (updates []capUpdate) {
for _, c := range pp.changed {
// always remove and push back in order to update biased/forced priority
func (pp *priorityPool) finalizeChanges(commit bool) (updates []capUpdate) {
for _, c := range pp.tempState {
// always remove and push back in order to update biased priority
pp.activeQueue.Remove(c.activeIndex)
pp.inactiveQueue.Remove(c.inactiveIndex)
c.bias = 0
c.forced = false
c.changed = false
if !commit {
pp.setCapacity(c, c.origCap)
oldCapacity := c.capacity
if commit {
c.capacity = c.tempCapacity
} else {
pp.setTempCapacity(c, c.capacity) // revert activeCount/activeCap
}
c.tempState = false
c.bias = 0
c.stepDiv = pp.capacityStepDiv
c.minTarget = pp.minCap
if c.connected {
if c.capacity != 0 {
pp.activeQueue.Push(c)
} else {
pp.inactiveQueue.Push(c, pp.inactivePriority(c))
}
if c.capacity != c.origCap && commit {
updates = append(updates, capUpdate{c.node, c.origCap, c.capacity})
if c.capacity != oldCapacity {
updates = append(updates, capUpdate{c.node, oldCapacity, c.capacity})
}
}
c.origCap = 0
}
pp.changed = nil
pp.tempState = nil
if commit {
pp.ccUpdateForced = true
}
return
}
// capUpdate describes a CapacityField and ActiveFlag/InactiveFlag update
// capUpdate describes a capacityField and activeFlag/inactiveFlag update
type capUpdate struct {
node *enode.Node
oldCap, newCap uint64
}
// updateFlags performs CapacityField and ActiveFlag/InactiveFlag updates while the
// updateFlags performs capacityField and activeFlag/inactiveFlag updates while the
// pool mutex is not held
// Note: this function should run inside a NodeStateMachine operation
func (pp *PriorityPool) updateFlags(updates []capUpdate) {
func (pp *priorityPool) updateFlags(updates []capUpdate) {
for _, f := range updates {
if f.oldCap == 0 {
pp.ns.SetStateSub(f.node, pp.ActiveFlag, pp.InactiveFlag, 0)
pp.ns.SetStateSub(f.node, pp.setup.activeFlag, pp.setup.inactiveFlag, 0)
}
if f.newCap == 0 {
pp.ns.SetStateSub(f.node, pp.InactiveFlag, pp.ActiveFlag, 0)
pp.ns.SetFieldSub(f.node, pp.CapacityField, nil)
pp.ns.SetStateSub(f.node, pp.setup.inactiveFlag, pp.setup.activeFlag, 0)
pp.ns.SetFieldSub(f.node, pp.setup.capacityField, nil)
} else {
pp.ns.SetFieldSub(f.node, pp.CapacityField, f.newCap)
pp.ns.SetFieldSub(f.node, pp.setup.capacityField, f.newCap)
}
}
}
// tryActivate tries to activate inactive nodes if possible
func (pp *PriorityPool) tryActivate() []capUpdate {
var commit bool
func (pp *priorityPool) tryActivate(commit bool) []capUpdate {
for pp.inactiveQueue.Size() > 0 {
c := pp.inactiveQueue.PopItem().(*ppNodeInfo)
pp.markForChange(c)
pp.setCapacity(c, pp.minCap)
pp.setTempState(c)
pp.setTempCapacity(c, pp.minCap)
c.bias = pp.activeBias
pp.activeQueue.Push(c)
pp.enforceLimits()
if c.capacity > 0 {
if c.tempCapacity > 0 {
commit = true
c.bias = 0
} else {
break
}
@ -497,7 +480,7 @@ func (pp *PriorityPool) tryActivate() []capUpdate {
// updatePriority gets the current priority value of the given node from the nodePriority
// interface and performs the necessary changes. It is triggered by updateFlag.
// Note: this function should run inside a NodeStateMachine operation
func (pp *PriorityPool) updatePriority(node *enode.Node) {
func (pp *priorityPool) updatePriority(node *enode.Node) {
pp.lock.Lock()
pp.activeQueue.Refresh()
var updates []capUpdate
@ -506,7 +489,7 @@ func (pp *PriorityPool) updatePriority(node *enode.Node) {
pp.updateFlags(updates)
}()
c, _ := pp.ns.GetField(node, pp.ppNodeInfoField).(*ppNodeInfo)
c, _ := pp.ns.GetField(node, pp.setup.queueField).(*ppNodeInfo)
if c == nil || !c.connected {
return
}
@ -517,15 +500,15 @@ func (pp *PriorityPool) updatePriority(node *enode.Node) {
} else {
pp.inactiveQueue.Push(c, pp.inactivePriority(c))
}
updates = pp.tryActivate()
updates = pp.tryActivate(false)
}
// CapacityCurve is a snapshot of the priority pool contents in a format that can efficiently
// capacityCurve is a snapshot of the priority pool contents in a format that can efficiently
// estimate how much capacity could be granted to a given node at a given priority level.
type CapacityCurve struct {
type capacityCurve struct {
points []curvePoint // curve points sorted in descending order of priority
index map[enode.ID][]int // curve point indexes belonging to each node
exclude []int // curve point indexes of excluded node
excludeList []int // curve point indexes of excluded node
excludeFirst bool // true if activeCount == maxCount
}
@ -534,8 +517,8 @@ type curvePoint struct {
nextPri int64 // next priority level where more capacity will be available
}
// GetCapacityCurve returns a new or recently cached CapacityCurve based on the contents of the pool
func (pp *PriorityPool) GetCapacityCurve() *CapacityCurve {
// getCapacityCurve returns a new or recently cached capacityCurve based on the contents of the pool
func (pp *priorityPool) getCapacityCurve() *capacityCurve {
pp.lock.Lock()
defer pp.lock.Unlock()
@ -547,7 +530,7 @@ func (pp *PriorityPool) GetCapacityCurve() *CapacityCurve {
pp.ccUpdateForced = false
pp.ccUpdatedAt = now
curve := &CapacityCurve{
curve := &capacityCurve{
index: make(map[enode.ID][]int),
}
pp.cachedCurve = curve
@ -556,6 +539,7 @@ func (pp *PriorityPool) GetCapacityCurve() *CapacityCurve {
excludeFirst := pp.maxCount == pp.activeCount
// reduce node capacities or remove nodes until nothing is left in the queue;
// record the available capacity and the necessary priority after each step
lastPri := int64(math.MinInt64)
for pp.activeCap > 0 {
cp := curvePoint{}
if pp.activeCap > pp.maxCap {
@ -570,9 +554,15 @@ func (pp *PriorityPool) GetCapacityCurve() *CapacityCurve {
// enforceLimits removes the lowest priority node if it has minimal capacity,
// otherwise reduces its capacity
next, cp.nextPri = pp.enforceLimits()
if cp.nextPri < lastPri {
// enforce monotonicity which may be broken by continuously changing priorities
cp.nextPri = lastPri
} else {
lastPri = cp.nextPri
}
pp.activeCap -= tempCap
if next == nil {
log.Error("GetCapacityCurve: cannot remove next element from the priority queue")
log.Error("getCapacityCurve: cannot remove next element from the priority queue")
break
}
id := next.node.ID()
@ -595,34 +585,34 @@ func (pp *PriorityPool) GetCapacityCurve() *CapacityCurve {
nextPri: math.MaxInt64,
})
if curve.excludeFirst {
curve.exclude = curve.index[excludeID]
curve.excludeList = curve.index[excludeID]
}
return curve
}
// Exclude returns a CapacityCurve with the given node excluded from the original curve
func (cc *CapacityCurve) Exclude(id enode.ID) *CapacityCurve {
if exclude, ok := cc.index[id]; ok {
// exclude returns a capacityCurve with the given node excluded from the original curve
func (cc *capacityCurve) exclude(id enode.ID) *capacityCurve {
if excludeList, ok := cc.index[id]; ok {
// return a new version of the curve (only one excluded node can be selected)
// Note: if the first node was excluded by default (excludeFirst == true) then
// we can forget about that and exclude the node with the given id instead.
return &CapacityCurve{
points: cc.points,
index: cc.index,
exclude: exclude,
return &capacityCurve{
points: cc.points,
index: cc.index,
excludeList: excludeList,
}
}
return cc
}
func (cc *CapacityCurve) getPoint(i int) curvePoint {
func (cc *capacityCurve) getPoint(i int) curvePoint {
cp := cc.points[i]
if i == 0 && cc.excludeFirst {
cp.freeCap = 0
return cp
}
for ii := len(cc.exclude) - 1; ii >= 0; ii-- {
ei := cc.exclude[ii]
for ii := len(cc.excludeList) - 1; ii >= 0; ii-- {
ei := cc.excludeList[ii]
if ei < i {
break
}
@ -632,11 +622,11 @@ func (cc *CapacityCurve) getPoint(i int) curvePoint {
return cp
}
// MaxCapacity calculates the maximum capacity available for a node with a given
// maxCapacity calculates the maximum capacity available for a node with a given
// (monotonically decreasing) priority vs. capacity function. Note that if the requesting
// node is already in the pool then it should be excluded from the curve in order to get
// the correct result.
func (cc *CapacityCurve) MaxCapacity(priority func(cap uint64) int64) uint64 {
func (cc *capacityCurve) maxCapacity(priority func(cap uint64) int64) uint64 {
min, max := 0, len(cc.points)-1 // the curve always has at least one point
for min < max {
mid := (min + max) / 2