cmd/evm, core/vm, test: refactored VM and core

* Moved `vm.Transfer` to `core` package and changed execution to call
`env.Transfer` instead of `core.Transfer` directly.
* core/vm: byte code VM moved to jump table instead of switch
* Moved `vm.Transfer` to `core` package and changed execution to call
  `env.Transfer` instead of `core.Transfer` directly.
* Byte code VM now shares the same code as the JITVM
* Renamed Context to Contract
* Changed initialiser of state transition & unexported methods
* Removed the Execution object and refactor `Call`, `CallCode` &
  `Create` in to their own functions instead of being methods.
* Removed the hard dep on the state for the VM. The VM now
  depends on a Database interface returned by the environment. In the
  process the core now depends less on the statedb by usage of the env
* Moved `Log` from package `core/state` to package `core/vm`.
This commit is contained in:
Jeffrey Wilcke
2015-08-30 10:19:10 +02:00
parent f7a71996fb
commit 361082ec4b
39 changed files with 966 additions and 1082 deletions

View File

@ -14,33 +14,32 @@
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package vm implements the Ethereum Virtual Machine.
package vm
import (
"fmt"
"math/big"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/params"
)
// Vm implements VirtualMachine
// Vm is an EVM and implements VirtualMachine
type Vm struct {
env Environment
}
// New returns a new Virtual Machine
// New returns a new Vm
func New(env Environment) *Vm {
return &Vm{env: env}
}
// Run loops and evaluates the contract's code with the given input data
func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) {
func (self *Vm) Run(contract *Contract, input []byte) (ret []byte, err error) {
self.env.SetDepth(self.env.Depth() + 1)
defer self.env.SetDepth(self.env.Depth() - 1)
@ -48,42 +47,48 @@ func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) {
defer func() {
if err != nil {
// In case of a VM exception (known exceptions) all gas consumed (panics NOT included).
context.UseGas(context.Gas)
contract.UseGas(contract.Gas)
ret = context.Return(nil)
ret = contract.Return(nil)
}
}()
if context.CodeAddr != nil {
if p := Precompiled[context.CodeAddr.Str()]; p != nil {
return self.RunPrecompiled(p, input, context)
if contract.CodeAddr != nil {
if p := Precompiled[contract.CodeAddr.Str()]; p != nil {
return self.RunPrecompiled(p, input, contract)
}
}
// Don't bother with the execution if there's no code.
if len(contract.Code) == 0 {
return contract.Return(nil), nil
}
var (
codehash = crypto.Sha3Hash(context.Code) // codehash is used when doing jump dest caching
codehash = crypto.Sha3Hash(contract.Code) // codehash is used when doing jump dest caching
program *Program
)
if EnableJit {
// Fetch program status.
// * If ready run using JIT
// * If unknown, compile in a seperate goroutine
// * If forced wait for compilation and run once done
if status := GetProgramStatus(codehash); status == progReady {
return RunProgram(GetProgram(codehash), self.env, context, input)
} else if status == progUnknown {
// If the JIT is enabled check the status of the JIT program,
// if it doesn't exist compile a new program in a seperate
// goroutine or wait for compilation to finish if the JIT is
// forced.
switch GetProgramStatus(codehash) {
case progReady:
return RunProgram(GetProgram(codehash), self.env, contract, input)
case progUnknown:
if ForceJit {
// Create and compile program
program = NewProgram(context.Code)
program = NewProgram(contract.Code)
perr := CompileProgram(program)
if perr == nil {
return RunProgram(program, self.env, context, input)
return RunProgram(program, self.env, contract, input)
}
glog.V(logger.Info).Infoln("error compiling program", err)
} else {
// create and compile the program. Compilation
// is done in a seperate goroutine
program = NewProgram(context.Code)
program = NewProgram(contract.Code)
go func() {
err := CompileProgram(program)
if err != nil {
@ -96,15 +101,14 @@ func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) {
}
var (
caller = context.caller
code = context.Code
value = context.value
price = context.Price
caller = contract.caller
code = contract.Code
instrCount = 0
op OpCode // current opcode
mem = NewMemory() // bound memory
stack = newstack() // local stack
statedb = self.env.State() // current state
op OpCode // current opcode
mem = NewMemory() // bound memory
stack = newstack() // local stack
statedb = self.env.Db() // current state
// For optimisation reason we're using uint64 as the program counter.
// It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Pratically much less so feasible.
pc = uint64(0) // program counter
@ -112,8 +116,8 @@ func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) {
// jump evaluates and checks whether the given jump destination is a valid one
// if valid move the `pc` otherwise return an error.
jump = func(from uint64, to *big.Int) error {
if !context.jumpdests.has(codehash, code, to) {
nop := context.GetOp(to.Uint64())
if !contract.jumpdests.has(codehash, code, to) {
nop := contract.GetOp(to.Uint64())
return fmt.Errorf("invalid jump destination (%v) %v", nop, to)
}
@ -125,552 +129,92 @@ func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) {
newMemSize *big.Int
cost *big.Int
)
contract.Input = input
// User defer pattern to check for an error and, based on the error being nil or not, use all gas and return.
defer func() {
if err != nil {
self.log(pc, op, context.Gas, cost, mem, stack, context, err)
self.log(pc, op, contract.Gas, cost, mem, stack, contract, err)
}
}()
// Don't bother with the execution if there's no code.
if len(code) == 0 {
return context.Return(nil), nil
if glog.V(logger.Debug) {
glog.Infof("running byte VM %x\n", codehash[:4])
tstart := time.Now()
defer func() {
glog.Infof("byte VM %x done. time: %v instrc: %v\n", codehash[:4], time.Since(tstart), instrCount)
}()
}
for {
// Overhead of the atomic read might not be worth it
/* TODO this still causes a few issues in the tests
if program != nil && progStatus(atomic.LoadInt32(&program.status)) == progReady {
// move execution
glog.V(logger.Info).Infoln("Moved execution to JIT")
return runProgram(program, pc, mem, stack, self.env, context, input)
}
for ; ; instrCount++ {
/*
if EnableJit && it%100 == 0 {
if program != nil && progStatus(atomic.LoadInt32(&program.status)) == progReady {
// move execution
fmt.Println("moved", it)
glog.V(logger.Info).Infoln("Moved execution to JIT")
return runProgram(program, pc, mem, stack, self.env, contract, input)
}
}
*/
// The base for all big integer arithmetic
base := new(big.Int)
// Get the memory location of pc
op = context.GetOp(pc)
op = contract.GetOp(pc)
// calculate the new memory size and gas price for the current executing opcode
newMemSize, cost, err = calculateGasAndSize(self.env, context, caller, op, statedb, mem, stack)
newMemSize, cost, err = calculateGasAndSize(self.env, contract, caller, op, statedb, mem, stack)
if err != nil {
return nil, err
}
// Use the calculated gas. When insufficient gas is present, use all gas and return an
// Out Of Gas error
if !context.UseGas(cost) {
if !contract.UseGas(cost) {
return nil, OutOfGasError
}
// Resize the memory calculated previously
mem.Resize(newMemSize.Uint64())
// Add a log message
self.log(pc, op, context.Gas, cost, mem, stack, context, nil)
self.log(pc, op, contract.Gas, cost, mem, stack, contract, nil)
switch op {
case ADD:
x, y := stack.pop(), stack.pop()
base.Add(x, y)
U256(base)
// pop result back on the stack
stack.push(base)
case SUB:
x, y := stack.pop(), stack.pop()
base.Sub(x, y)
U256(base)
// pop result back on the stack
stack.push(base)
case MUL:
x, y := stack.pop(), stack.pop()
base.Mul(x, y)
U256(base)
// pop result back on the stack
stack.push(base)
case DIV:
x, y := stack.pop(), stack.pop()
if y.Cmp(common.Big0) != 0 {
base.Div(x, y)
}
U256(base)
// pop result back on the stack
stack.push(base)
case SDIV:
x, y := S256(stack.pop()), S256(stack.pop())
if y.Cmp(common.Big0) == 0 {
base.Set(common.Big0)
if opPtr := jumpTable[op]; opPtr.valid {
if opPtr.fn != nil {
opPtr.fn(instruction{}, &pc, self.env, contract, mem, stack)
} else {
n := new(big.Int)
if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 {
n.SetInt64(-1)
} else {
n.SetInt64(1)
switch op {
case PC:
opPc(instruction{data: new(big.Int).SetUint64(pc)}, &pc, self.env, contract, mem, stack)
case JUMP:
if err := jump(pc, stack.pop()); err != nil {
return nil, err
}
continue
case JUMPI:
pos, cond := stack.pop(), stack.pop()
if cond.Cmp(common.BigTrue) >= 0 {
if err := jump(pc, pos); err != nil {
return nil, err
}
continue
}
case RETURN:
offset, size := stack.pop(), stack.pop()
ret := mem.GetPtr(offset.Int64(), size.Int64())
return contract.Return(ret), nil
case SUICIDE:
opSuicide(instruction{}, nil, self.env, contract, mem, stack)
fallthrough
case STOP: // Stop the contract
return contract.Return(nil), nil
}
base.Div(x.Abs(x), y.Abs(y)).Mul(base, n)
U256(base)
}
stack.push(base)
case MOD:
x, y := stack.pop(), stack.pop()
if y.Cmp(common.Big0) == 0 {
base.Set(common.Big0)
} else {
base.Mod(x, y)
}
U256(base)
stack.push(base)
case SMOD:
x, y := S256(stack.pop()), S256(stack.pop())
if y.Cmp(common.Big0) == 0 {
base.Set(common.Big0)
} else {
n := new(big.Int)
if x.Cmp(common.Big0) < 0 {
n.SetInt64(-1)
} else {
n.SetInt64(1)
}
base.Mod(x.Abs(x), y.Abs(y)).Mul(base, n)
U256(base)
}
stack.push(base)
case EXP:
x, y := stack.pop(), stack.pop()
base.Exp(x, y, Pow256)
U256(base)
stack.push(base)
case SIGNEXTEND:
back := stack.pop()
if back.Cmp(big.NewInt(31)) < 0 {
bit := uint(back.Uint64()*8 + 7)
num := stack.pop()
mask := new(big.Int).Lsh(common.Big1, bit)
mask.Sub(mask, common.Big1)
if common.BitTest(num, int(bit)) {
num.Or(num, mask.Not(mask))
} else {
num.And(num, mask)
}
num = U256(num)
stack.push(num)
}
case NOT:
stack.push(U256(new(big.Int).Not(stack.pop())))
case LT:
x, y := stack.pop(), stack.pop()
// x < y
if x.Cmp(y) < 0 {
stack.push(common.BigTrue)
} else {
stack.push(common.BigFalse)
}
case GT:
x, y := stack.pop(), stack.pop()
// x > y
if x.Cmp(y) > 0 {
stack.push(common.BigTrue)
} else {
stack.push(common.BigFalse)
}
case SLT:
x, y := S256(stack.pop()), S256(stack.pop())
// x < y
if x.Cmp(S256(y)) < 0 {
stack.push(common.BigTrue)
} else {
stack.push(common.BigFalse)
}
case SGT:
x, y := S256(stack.pop()), S256(stack.pop())
// x > y
if x.Cmp(y) > 0 {
stack.push(common.BigTrue)
} else {
stack.push(common.BigFalse)
}
case EQ:
x, y := stack.pop(), stack.pop()
// x == y
if x.Cmp(y) == 0 {
stack.push(common.BigTrue)
} else {
stack.push(common.BigFalse)
}
case ISZERO:
x := stack.pop()
if x.Cmp(common.BigFalse) > 0 {
stack.push(common.BigFalse)
} else {
stack.push(common.BigTrue)
}
case AND:
x, y := stack.pop(), stack.pop()
stack.push(base.And(x, y))
case OR:
x, y := stack.pop(), stack.pop()
stack.push(base.Or(x, y))
case XOR:
x, y := stack.pop(), stack.pop()
stack.push(base.Xor(x, y))
case BYTE:
th, val := stack.pop(), stack.pop()
if th.Cmp(big.NewInt(32)) < 0 {
byt := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()]))
base.Set(byt)
} else {
base.Set(common.BigFalse)
}
stack.push(base)
case ADDMOD:
x := stack.pop()
y := stack.pop()
z := stack.pop()
if z.Cmp(Zero) > 0 {
add := new(big.Int).Add(x, y)
base.Mod(add, z)
base = U256(base)
}
stack.push(base)
case MULMOD:
x := stack.pop()
y := stack.pop()
z := stack.pop()
if z.Cmp(Zero) > 0 {
mul := new(big.Int).Mul(x, y)
base.Mod(mul, z)
U256(base)
}
stack.push(base)
case SHA3:
offset, size := stack.pop(), stack.pop()
data := crypto.Sha3(mem.Get(offset.Int64(), size.Int64()))
stack.push(common.BigD(data))
case ADDRESS:
stack.push(common.Bytes2Big(context.Address().Bytes()))
case BALANCE:
addr := common.BigToAddress(stack.pop())
balance := statedb.GetBalance(addr)
stack.push(new(big.Int).Set(balance))
case ORIGIN:
origin := self.env.Origin()
stack.push(origin.Big())
case CALLER:
caller := context.caller.Address()
stack.push(common.Bytes2Big(caller.Bytes()))
case CALLVALUE:
stack.push(new(big.Int).Set(value))
case CALLDATALOAD:
data := getData(input, stack.pop(), common.Big32)
stack.push(common.Bytes2Big(data))
case CALLDATASIZE:
l := int64(len(input))
stack.push(big.NewInt(l))
case CALLDATACOPY:
var (
mOff = stack.pop()
cOff = stack.pop()
l = stack.pop()
)
data := getData(input, cOff, l)
mem.Set(mOff.Uint64(), l.Uint64(), data)
case CODESIZE, EXTCODESIZE:
var code []byte
if op == EXTCODESIZE {
addr := common.BigToAddress(stack.pop())
code = statedb.GetCode(addr)
} else {
code = context.Code
}
l := big.NewInt(int64(len(code)))
stack.push(l)
case CODECOPY, EXTCODECOPY:
var code []byte
if op == EXTCODECOPY {
addr := common.BigToAddress(stack.pop())
code = statedb.GetCode(addr)
} else {
code = context.Code
}
var (
mOff = stack.pop()
cOff = stack.pop()
l = stack.pop()
)
codeCopy := getData(code, cOff, l)
mem.Set(mOff.Uint64(), l.Uint64(), codeCopy)
case GASPRICE:
stack.push(new(big.Int).Set(context.Price))
case BLOCKHASH:
num := stack.pop()
n := new(big.Int).Sub(self.env.BlockNumber(), common.Big257)
if num.Cmp(n) > 0 && num.Cmp(self.env.BlockNumber()) < 0 {
stack.push(self.env.GetHash(num.Uint64()).Big())
} else {
stack.push(common.Big0)
}
case COINBASE:
coinbase := self.env.Coinbase()
stack.push(coinbase.Big())
case TIMESTAMP:
time := self.env.Time()
stack.push(new(big.Int).Set(time))
case NUMBER:
number := self.env.BlockNumber()
stack.push(U256(number))
case DIFFICULTY:
difficulty := self.env.Difficulty()
stack.push(new(big.Int).Set(difficulty))
case GASLIMIT:
stack.push(new(big.Int).Set(self.env.GasLimit()))
case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32:
size := uint64(op - PUSH1 + 1)
byts := getData(code, new(big.Int).SetUint64(pc+1), new(big.Int).SetUint64(size))
// push value to stack
stack.push(common.Bytes2Big(byts))
pc += size
case POP:
stack.pop()
case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16:
n := int(op - DUP1 + 1)
stack.dup(n)
case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16:
n := int(op - SWAP1 + 2)
stack.swap(n)
case LOG0, LOG1, LOG2, LOG3, LOG4:
n := int(op - LOG0)
topics := make([]common.Hash, n)
mStart, mSize := stack.pop(), stack.pop()
for i := 0; i < n; i++ {
topics[i] = common.BigToHash(stack.pop())
}
data := mem.Get(mStart.Int64(), mSize.Int64())
log := state.NewLog(context.Address(), topics, data, self.env.BlockNumber().Uint64())
self.env.AddLog(log)
case MLOAD:
offset := stack.pop()
val := common.BigD(mem.Get(offset.Int64(), 32))
stack.push(val)
case MSTORE:
// pop value of the stack
mStart, val := stack.pop(), stack.pop()
mem.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256))
case MSTORE8:
off, val := stack.pop().Int64(), stack.pop().Int64()
mem.store[off] = byte(val & 0xff)
case SLOAD:
loc := common.BigToHash(stack.pop())
val := statedb.GetState(context.Address(), loc).Big()
stack.push(val)
case SSTORE:
loc := common.BigToHash(stack.pop())
val := stack.pop()
statedb.SetState(context.Address(), loc, common.BigToHash(val))
case JUMP:
if err := jump(pc, stack.pop()); err != nil {
return nil, err
}
continue
case JUMPI:
pos, cond := stack.pop(), stack.pop()
if cond.Cmp(common.BigTrue) >= 0 {
if err := jump(pc, pos); err != nil {
return nil, err
}
continue
}
case JUMPDEST:
case PC:
stack.push(new(big.Int).SetUint64(pc))
case MSIZE:
stack.push(big.NewInt(int64(mem.Len())))
case GAS:
stack.push(new(big.Int).Set(context.Gas))
case CREATE:
var (
value = stack.pop()
offset, size = stack.pop(), stack.pop()
input = mem.Get(offset.Int64(), size.Int64())
gas = new(big.Int).Set(context.Gas)
addr common.Address
)
context.UseGas(context.Gas)
ret, suberr, ref := self.env.Create(context, input, gas, price, value)
if suberr != nil {
stack.push(common.BigFalse)
} else {
// gas < len(ret) * CreateDataGas == NO_CODE
dataGas := big.NewInt(int64(len(ret)))
dataGas.Mul(dataGas, params.CreateDataGas)
if context.UseGas(dataGas) {
ref.SetCode(ret)
}
addr = ref.Address()
stack.push(addr.Big())
}
case CALL, CALLCODE:
gas := stack.pop()
// pop gas and value of the stack.
addr, value := stack.pop(), stack.pop()
value = U256(value)
// pop input size and offset
inOffset, inSize := stack.pop(), stack.pop()
// pop return size and offset
retOffset, retSize := stack.pop(), stack.pop()
address := common.BigToAddress(addr)
// Get the arguments from the memory
args := mem.Get(inOffset.Int64(), inSize.Int64())
if len(value.Bytes()) > 0 {
gas.Add(gas, params.CallStipend)
}
var (
ret []byte
err error
)
if op == CALLCODE {
ret, err = self.env.CallCode(context, address, args, gas, price, value)
} else {
ret, err = self.env.Call(context, address, args, gas, price, value)
}
if err != nil {
stack.push(common.BigFalse)
} else {
stack.push(common.BigTrue)
mem.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
case RETURN:
offset, size := stack.pop(), stack.pop()
ret := mem.GetPtr(offset.Int64(), size.Int64())
return context.Return(ret), nil
case SUICIDE:
receiver := statedb.GetOrNewStateObject(common.BigToAddress(stack.pop()))
balance := statedb.GetBalance(context.Address())
receiver.AddBalance(balance)
statedb.Delete(context.Address())
fallthrough
case STOP: // Stop the context
return context.Return(nil), nil
default:
} else {
return nil, fmt.Errorf("Invalid opcode %x", op)
}
@ -681,7 +225,7 @@ func (self *Vm) Run(context *Context, input []byte) (ret []byte, err error) {
// calculateGasAndSize calculates the required given the opcode and stack items calculates the new memorysize for
// the operation. This does not reduce gas or resizes the memory.
func calculateGasAndSize(env Environment, context *Context, caller ContextRef, op OpCode, statedb *state.StateDB, mem *Memory, stack *stack) (*big.Int, *big.Int, error) {
func calculateGasAndSize(env Environment, contract *Contract, caller ContractRef, op OpCode, statedb Database, mem *Memory, stack *stack) (*big.Int, *big.Int, error) {
var (
gas = new(big.Int)
newMemSize *big.Int = new(big.Int)
@ -731,7 +275,7 @@ func calculateGasAndSize(env Environment, context *Context, caller ContextRef, o
var g *big.Int
y, x := stack.data[stack.len()-2], stack.data[stack.len()-1]
val := statedb.GetState(context.Address(), common.BigToHash(x))
val := statedb.GetState(contract.Address(), common.BigToHash(x))
// This checks for 3 scenario's and calculates gas accordingly
// 1. From a zero-value address to a non-zero value (NEW VALUE)
@ -741,7 +285,7 @@ func calculateGasAndSize(env Environment, context *Context, caller ContextRef, o
// 0 => non 0
g = params.SstoreSetGas
} else if !common.EmptyHash(val) && common.EmptyHash(common.BigToHash(y)) {
statedb.Refund(params.SstoreRefundGas)
statedb.AddRefund(params.SstoreRefundGas)
g = params.SstoreClearGas
} else {
@ -750,8 +294,8 @@ func calculateGasAndSize(env Environment, context *Context, caller ContextRef, o
}
gas.Set(g)
case SUICIDE:
if !statedb.IsDeleted(context.Address()) {
statedb.Refund(params.SuicideRefundGas)
if !statedb.IsDeleted(contract.Address()) {
statedb.AddRefund(params.SuicideRefundGas)
}
case MLOAD:
newMemSize = calcMemSize(stack.peek(), u256(32))
@ -788,7 +332,8 @@ func calculateGasAndSize(env Environment, context *Context, caller ContextRef, o
gas.Add(gas, stack.data[stack.len()-1])
if op == CALL {
if env.State().GetStateObject(common.BigToAddress(stack.data[stack.len()-2])) == nil {
//if env.Db().GetStateObject(common.BigToAddress(stack.data[stack.len()-2])) == nil {
if !env.Db().Exist(common.BigToAddress(stack.data[stack.len()-2])) {
gas.Add(gas, params.CallNewAccountGas)
}
}
@ -802,38 +347,18 @@ func calculateGasAndSize(env Environment, context *Context, caller ContextRef, o
newMemSize = common.BigMax(x, y)
}
if newMemSize.Cmp(common.Big0) > 0 {
newMemSizeWords := toWordSize(newMemSize)
newMemSize.Mul(newMemSizeWords, u256(32))
if newMemSize.Cmp(u256(int64(mem.Len()))) > 0 {
oldSize := toWordSize(big.NewInt(int64(mem.Len())))
pow := new(big.Int).Exp(oldSize, common.Big2, Zero)
linCoef := new(big.Int).Mul(oldSize, params.MemoryGas)
quadCoef := new(big.Int).Div(pow, params.QuadCoeffDiv)
oldTotalFee := new(big.Int).Add(linCoef, quadCoef)
pow.Exp(newMemSizeWords, common.Big2, Zero)
linCoef = new(big.Int).Mul(newMemSizeWords, params.MemoryGas)
quadCoef = new(big.Int).Div(pow, params.QuadCoeffDiv)
newTotalFee := new(big.Int).Add(linCoef, quadCoef)
fee := new(big.Int).Sub(newTotalFee, oldTotalFee)
gas.Add(gas, fee)
}
}
quadMemGas(mem, newMemSize, gas)
return newMemSize, gas, nil
}
// RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go
func (self *Vm) RunPrecompiled(p *PrecompiledAccount, input []byte, context *Context) (ret []byte, err error) {
func (self *Vm) RunPrecompiled(p *PrecompiledAccount, input []byte, contract *Contract) (ret []byte, err error) {
gas := p.Gas(len(input))
if context.UseGas(gas) {
if contract.UseGas(gas) {
ret = p.Call(input)
return context.Return(ret), nil
return contract.Return(ret), nil
} else {
return nil, OutOfGasError
}
@ -841,18 +366,20 @@ func (self *Vm) RunPrecompiled(p *PrecompiledAccount, input []byte, context *Con
// log emits a log event to the environment for each opcode encountered. This is not to be confused with the
// LOG* opcode.
func (self *Vm) log(pc uint64, op OpCode, gas, cost *big.Int, memory *Memory, stack *stack, context *Context, err error) {
func (self *Vm) log(pc uint64, op OpCode, gas, cost *big.Int, memory *Memory, stack *stack, contract *Contract, err error) {
if Debug {
mem := make([]byte, len(memory.Data()))
copy(mem, memory.Data())
stck := make([]*big.Int, len(stack.Data()))
copy(stck, stack.Data())
object := context.self.(*state.StateObject)
storage := make(map[common.Hash][]byte)
object.EachStorage(func(k, v []byte) {
storage[common.BytesToHash(k)] = v
})
/*
object := contract.self.(*state.StateObject)
object.EachStorage(func(k, v []byte) {
storage[common.BytesToHash(k)] = v
})
*/
self.env.AddStructLog(StructLog{pc, op, new(big.Int).Set(gas), cost, mem, stck, storage, err})
}