trie: separate hashes and committer, collapse on commit
* trie: make db insert use size instead of full data * core/state: minor optimization in state onleaf allocation * trie: implement dedicated committer and hasher * trie: use dedicated committer/hasher * trie: linter nitpicks * core/state, trie: avoid unnecessary storage trie load+commit * trie: review feedback, mainly docs + minor changes * trie: start deprecating old hasher * trie: fix misspell+lint * trie: deprecate hasher.go, make proof framework use new hasher * trie: rename pure_committer/hasher to committer/hasher * trie, core/state: fix review concerns * trie: more review concerns * trie: make commit collapse into hashnode, don't touch dirtyness * trie: goimports fixes * trie: remove panics
This commit is contained in:
committed by
GitHub
parent
4cc89a5a32
commit
5a9c96454e
279
trie/committer.go
Normal file
279
trie/committer.go
Normal file
@ -0,0 +1,279 @@
|
||||
// Copyright 2019 The go-ethereum Authors
|
||||
// This file is part of the go-ethereum library.
|
||||
//
|
||||
// The go-ethereum library is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// The go-ethereum library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
package trie
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"sync"
|
||||
|
||||
"github.com/ethereum/go-ethereum/common"
|
||||
"github.com/ethereum/go-ethereum/rlp"
|
||||
"golang.org/x/crypto/sha3"
|
||||
)
|
||||
|
||||
// leafChanSize is the size of the leafCh. It's a pretty arbitrary number, to allow
|
||||
// some paralellism but not incur too much memory overhead.
|
||||
const leafChanSize = 200
|
||||
|
||||
// leaf represents a trie leaf value
|
||||
type leaf struct {
|
||||
size int // size of the rlp data (estimate)
|
||||
hash common.Hash // hash of rlp data
|
||||
node node // the node to commit
|
||||
vnodes bool // set to true if the node (possibly) contains a valueNode
|
||||
}
|
||||
|
||||
// committer is a type used for the trie Commit operation. A committer has some
|
||||
// internal preallocated temp space, and also a callback that is invoked when
|
||||
// leaves are committed. The leafs are passed through the `leafCh`, to allow
|
||||
// some level of paralellism.
|
||||
// By 'some level' of parallelism, it's still the case that all leaves will be
|
||||
// processed sequentially - onleaf will never be called in parallel or out of order.
|
||||
type committer struct {
|
||||
tmp sliceBuffer
|
||||
sha keccakState
|
||||
|
||||
onleaf LeafCallback
|
||||
leafCh chan *leaf
|
||||
}
|
||||
|
||||
// committers live in a global sync.Pool
|
||||
var committerPool = sync.Pool{
|
||||
New: func() interface{} {
|
||||
return &committer{
|
||||
tmp: make(sliceBuffer, 0, 550), // cap is as large as a full fullNode.
|
||||
sha: sha3.NewLegacyKeccak256().(keccakState),
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
// newCommitter creates a new committer or picks one from the pool.
|
||||
func newCommitter() *committer {
|
||||
return committerPool.Get().(*committer)
|
||||
}
|
||||
|
||||
func returnCommitterToPool(h *committer) {
|
||||
h.onleaf = nil
|
||||
h.leafCh = nil
|
||||
committerPool.Put(h)
|
||||
}
|
||||
|
||||
// commitNeeded returns 'false' if the given node is already in sync with db
|
||||
func (c *committer) commitNeeded(n node) bool {
|
||||
hash, dirty := n.cache()
|
||||
return hash == nil || dirty
|
||||
}
|
||||
|
||||
// commit collapses a node down into a hash node and inserts it into the database
|
||||
func (c *committer) Commit(n node, db *Database) (hashNode, error) {
|
||||
if db == nil {
|
||||
return nil, errors.New("no db provided")
|
||||
}
|
||||
h, err := c.commit(n, db, true)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return h.(hashNode), nil
|
||||
}
|
||||
|
||||
// commit collapses a node down into a hash node and inserts it into the database
|
||||
func (c *committer) commit(n node, db *Database, force bool) (node, error) {
|
||||
// if this path is clean, use available cached data
|
||||
hash, dirty := n.cache()
|
||||
if hash != nil && !dirty {
|
||||
return hash, nil
|
||||
}
|
||||
// Commit children, then parent, and remove remove the dirty flag.
|
||||
switch cn := n.(type) {
|
||||
case *shortNode:
|
||||
// Commit child
|
||||
collapsed := cn.copy()
|
||||
if _, ok := cn.Val.(valueNode); !ok {
|
||||
if childV, err := c.commit(cn.Val, db, false); err != nil {
|
||||
return nil, err
|
||||
} else {
|
||||
collapsed.Val = childV
|
||||
}
|
||||
}
|
||||
// The key needs to be copied, since we're delivering it to database
|
||||
collapsed.Key = hexToCompact(cn.Key)
|
||||
hashedNode := c.store(collapsed, db, force, true)
|
||||
if hn, ok := hashedNode.(hashNode); ok {
|
||||
return hn, nil
|
||||
} else {
|
||||
return collapsed, nil
|
||||
}
|
||||
case *fullNode:
|
||||
hashedKids, hasVnodes, err := c.commitChildren(cn, db, force)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
collapsed := cn.copy()
|
||||
collapsed.Children = hashedKids
|
||||
|
||||
hashedNode := c.store(collapsed, db, force, hasVnodes)
|
||||
if hn, ok := hashedNode.(hashNode); ok {
|
||||
return hn, nil
|
||||
} else {
|
||||
return collapsed, nil
|
||||
}
|
||||
case valueNode:
|
||||
return c.store(cn, db, force, false), nil
|
||||
// hashnodes aren't stored
|
||||
case hashNode:
|
||||
return cn, nil
|
||||
}
|
||||
return hash, nil
|
||||
}
|
||||
|
||||
// commitChildren commits the children of the given fullnode
|
||||
func (c *committer) commitChildren(n *fullNode, db *Database, force bool) ([17]node, bool, error) {
|
||||
var children [17]node
|
||||
var hasValueNodeChildren = false
|
||||
for i, child := range n.Children {
|
||||
if child == nil {
|
||||
continue
|
||||
}
|
||||
hnode, err := c.commit(child, db, false)
|
||||
if err != nil {
|
||||
return children, false, err
|
||||
}
|
||||
children[i] = hnode
|
||||
if _, ok := hnode.(valueNode); ok {
|
||||
hasValueNodeChildren = true
|
||||
}
|
||||
}
|
||||
return children, hasValueNodeChildren, nil
|
||||
}
|
||||
|
||||
// store hashes the node n and if we have a storage layer specified, it writes
|
||||
// the key/value pair to it and tracks any node->child references as well as any
|
||||
// node->external trie references.
|
||||
func (c *committer) store(n node, db *Database, force bool, hasVnodeChildren bool) node {
|
||||
// Larger nodes are replaced by their hash and stored in the database.
|
||||
var (
|
||||
hash, _ = n.cache()
|
||||
size int
|
||||
)
|
||||
if hash == nil {
|
||||
if vn, ok := n.(valueNode); ok {
|
||||
c.tmp.Reset()
|
||||
if err := rlp.Encode(&c.tmp, vn); err != nil {
|
||||
panic("encode error: " + err.Error())
|
||||
}
|
||||
size = len(c.tmp)
|
||||
if size < 32 && !force {
|
||||
return n // Nodes smaller than 32 bytes are stored inside their parent
|
||||
}
|
||||
hash = c.makeHashNode(c.tmp)
|
||||
} else {
|
||||
// This was not generated - must be a small node stored in the parent
|
||||
// No need to do anything here
|
||||
return n
|
||||
}
|
||||
} else {
|
||||
// We have the hash already, estimate the RLP encoding-size of the node.
|
||||
// The size is used for mem tracking, does not need to be exact
|
||||
size = estimateSize(n)
|
||||
}
|
||||
// If we're using channel-based leaf-reporting, send to channel.
|
||||
// The leaf channel will be active only when there an active leaf-callback
|
||||
if c.leafCh != nil {
|
||||
c.leafCh <- &leaf{
|
||||
size: size,
|
||||
hash: common.BytesToHash(hash),
|
||||
node: n,
|
||||
vnodes: hasVnodeChildren,
|
||||
}
|
||||
} else if db != nil {
|
||||
// No leaf-callback used, but there's still a database. Do serial
|
||||
// insertion
|
||||
db.lock.Lock()
|
||||
db.insert(common.BytesToHash(hash), size, n)
|
||||
db.lock.Unlock()
|
||||
}
|
||||
return hash
|
||||
}
|
||||
|
||||
// commitLoop does the actual insert + leaf callback for nodes
|
||||
func (c *committer) commitLoop(db *Database) {
|
||||
for item := range c.leafCh {
|
||||
var (
|
||||
hash = item.hash
|
||||
size = item.size
|
||||
n = item.node
|
||||
hasVnodes = item.vnodes
|
||||
)
|
||||
// We are pooling the trie nodes into an intermediate memory cache
|
||||
db.lock.Lock()
|
||||
db.insert(hash, size, n)
|
||||
db.lock.Unlock()
|
||||
if c.onleaf != nil && hasVnodes {
|
||||
switch n := n.(type) {
|
||||
case *shortNode:
|
||||
if child, ok := n.Val.(valueNode); ok {
|
||||
c.onleaf(child, hash)
|
||||
}
|
||||
case *fullNode:
|
||||
for i := 0; i < 16; i++ {
|
||||
if child, ok := n.Children[i].(valueNode); ok {
|
||||
c.onleaf(child, hash)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (c *committer) makeHashNode(data []byte) hashNode {
|
||||
n := make(hashNode, c.sha.Size())
|
||||
c.sha.Reset()
|
||||
c.sha.Write(data)
|
||||
c.sha.Read(n)
|
||||
return n
|
||||
}
|
||||
|
||||
// estimateSize estimates the size of an rlp-encoded node, without actually
|
||||
// rlp-encoding it (zero allocs). This method has been experimentally tried, and with a trie
|
||||
// with 1000 leafs, the only errors above 1% are on small shortnodes, where this
|
||||
// method overestimates by 2 or 3 bytes (e.g. 37 instead of 35)
|
||||
func estimateSize(n node) int {
|
||||
switch n := n.(type) {
|
||||
case *shortNode:
|
||||
// A short node contains a compacted key, and a value.
|
||||
return 3 + len(n.Key) + estimateSize(n.Val)
|
||||
case *fullNode:
|
||||
// A full node contains up to 16 hashes (some nils), and a key
|
||||
s := 3
|
||||
for i := 0; i < 16; i++ {
|
||||
if child := n.Children[i]; child != nil {
|
||||
s += estimateSize(child)
|
||||
} else {
|
||||
s += 1
|
||||
}
|
||||
}
|
||||
return s
|
||||
case valueNode:
|
||||
return 1 + len(n)
|
||||
case hashNode:
|
||||
return 1 + len(n)
|
||||
default:
|
||||
panic(fmt.Sprintf("node type %T", n))
|
||||
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user