p2p: integrate p2p/discover

Overview of changes:

- ClientIdentity has been removed, use discover.NodeID
- Server now requires a private key to be set (instead of public key)
- Server performs the encryption handshake before launching Peer
- Dial logic takes peers from discover table
- Encryption handshake code has been cleaned up a bit
- baseProtocol is gone because we don't exchange peers anymore
- Some parts of baseProtocol have moved into Peer instead
This commit is contained in:
Felix Lange
2015-02-05 03:07:58 +01:00
parent 739066ec56
commit 5bdc115943
15 changed files with 1080 additions and 1683 deletions

View File

@ -3,10 +3,9 @@ package p2p
import (
"bytes"
"crypto/ecdsa"
"fmt"
"crypto/rand"
"net"
"testing"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/obscuren/ecies"
@ -16,7 +15,7 @@ func TestPublicKeyEncoding(t *testing.T) {
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
pub0 := &prv0.PublicKey
pub0s := crypto.FromECDSAPub(pub0)
pub1, err := ImportPublicKey(pub0s)
pub1, err := importPublicKey(pub0s)
if err != nil {
t.Errorf("%v", err)
}
@ -24,18 +23,18 @@ func TestPublicKeyEncoding(t *testing.T) {
if eciesPub1 == nil {
t.Errorf("invalid ecdsa public key")
}
pub1s, err := ExportPublicKey(pub1)
pub1s, err := exportPublicKey(pub1)
if err != nil {
t.Errorf("%v", err)
}
if len(pub1s) != 64 {
t.Errorf("wrong length expect 64, got", len(pub1s))
}
pub2, err := ImportPublicKey(pub1s)
pub2, err := importPublicKey(pub1s)
if err != nil {
t.Errorf("%v", err)
}
pub2s, err := ExportPublicKey(pub2)
pub2s, err := exportPublicKey(pub2)
if err != nil {
t.Errorf("%v", err)
}
@ -69,95 +68,53 @@ func TestSharedSecret(t *testing.T) {
}
func TestCryptoHandshake(t *testing.T) {
testCryptoHandshakeWithGen(false, t)
testCryptoHandshake(newkey(), newkey(), nil, t)
}
func TestTokenCryptoHandshake(t *testing.T) {
testCryptoHandshakeWithGen(true, t)
}
func TestDetCryptoHandshake(t *testing.T) {
defer testlog(t).detach()
tmpkeyF := keyF
keyF = detkeyF
tmpnonceF := nonceF
nonceF = detnonceF
testCryptoHandshakeWithGen(false, t)
keyF = tmpkeyF
nonceF = tmpnonceF
}
func TestDetTokenCryptoHandshake(t *testing.T) {
defer testlog(t).detach()
tmpkeyF := keyF
keyF = detkeyF
tmpnonceF := nonceF
nonceF = detnonceF
testCryptoHandshakeWithGen(true, t)
keyF = tmpkeyF
nonceF = tmpnonceF
}
func testCryptoHandshakeWithGen(token bool, t *testing.T) {
fmt.Printf("init-private-key: ")
prv0, err := keyF()
if err != nil {
t.Errorf("%v", err)
return
}
fmt.Printf("rec-private-key: ")
prv1, err := keyF()
if err != nil {
t.Errorf("%v", err)
return
}
var nonce []byte
if token {
fmt.Printf("session-token: ")
nonce = make([]byte, shaLen)
nonceF(nonce)
}
testCryptoHandshake(prv0, prv1, nonce, t)
func TestCryptoHandshakeWithToken(t *testing.T) {
sessionToken := make([]byte, shaLen)
rand.Read(sessionToken)
testCryptoHandshake(newkey(), newkey(), sessionToken, t)
}
func testCryptoHandshake(prv0, prv1 *ecdsa.PrivateKey, sessionToken []byte, t *testing.T) {
var err error
pub0 := &prv0.PublicKey
// pub0 := &prv0.PublicKey
pub1 := &prv1.PublicKey
pub0s := crypto.FromECDSAPub(pub0)
// pub0s := crypto.FromECDSAPub(pub0)
pub1s := crypto.FromECDSAPub(pub1)
// simulate handshake by feeding output to input
// initiator sends handshake 'auth'
auth, initNonce, randomPrivKey, _, err := startHandshake(prv0, pub1s, sessionToken)
auth, initNonce, randomPrivKey, err := authMsg(prv0, pub1s, sessionToken)
if err != nil {
t.Errorf("%v", err)
}
fmt.Printf("-> %v\n", hexkey(auth))
t.Logf("-> %v", hexkey(auth))
// receiver reads auth and responds with response
response, remoteRecNonce, remoteInitNonce, remoteRandomPrivKey, remoteInitRandomPubKey, err := respondToHandshake(auth, prv1, pub0s, sessionToken)
response, remoteRecNonce, remoteInitNonce, _, remoteRandomPrivKey, remoteInitRandomPubKey, err := authResp(auth, sessionToken, prv1)
if err != nil {
t.Errorf("%v", err)
}
fmt.Printf("<- %v\n", hexkey(response))
t.Logf("<- %v\n", hexkey(response))
// initiator reads receiver's response and the key exchange completes
recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prv0)
if err != nil {
t.Errorf("%v", err)
t.Errorf("completeHandshake error: %v", err)
}
// now both parties should have the same session parameters
initSessionToken, initSecretRW, err := newSession(true, initNonce, recNonce, auth, randomPrivKey, remoteRandomPubKey)
initSessionToken, err := newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
if err != nil {
t.Errorf("%v", err)
t.Errorf("newSession error: %v", err)
}
recSessionToken, recSecretRW, err := newSession(false, remoteInitNonce, remoteRecNonce, auth, remoteRandomPrivKey, remoteInitRandomPubKey)
recSessionToken, err := newSession(remoteInitNonce, remoteRecNonce, remoteRandomPrivKey, remoteInitRandomPubKey)
if err != nil {
t.Errorf("%v", err)
t.Errorf("newSession error: %v", err)
}
// fmt.Printf("\nauth (%v) %x\n\nresp (%v) %x\n\n", len(auth), auth, len(response), response)
@ -173,76 +130,38 @@ func testCryptoHandshake(prv0, prv1 *ecdsa.PrivateKey, sessionToken []byte, t *t
if !bytes.Equal(initSessionToken, recSessionToken) {
t.Errorf("session tokens do not match")
}
// aesSecret, macSecret, egressMac, ingressMac
if !bytes.Equal(initSecretRW.aesSecret, recSecretRW.aesSecret) {
t.Errorf("AES secrets do not match")
}
if !bytes.Equal(initSecretRW.macSecret, recSecretRW.macSecret) {
t.Errorf("macSecrets do not match")
}
if !bytes.Equal(initSecretRW.egressMac, recSecretRW.ingressMac) {
t.Errorf("initiator's egressMac do not match receiver's ingressMac")
}
if !bytes.Equal(initSecretRW.ingressMac, recSecretRW.egressMac) {
t.Errorf("initiator's inressMac do not match receiver's egressMac")
}
}
func TestPeersHandshake(t *testing.T) {
func TestHandshake(t *testing.T) {
defer testlog(t).detach()
var err error
// var sessionToken []byte
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
pub0 := &prv0.PublicKey
prv0, _ := crypto.GenerateKey()
prv1, _ := crypto.GenerateKey()
pub1 := &prv1.PublicKey
pub0s, _ := exportPublicKey(&prv0.PublicKey)
pub1s, _ := exportPublicKey(&prv1.PublicKey)
rw0, rw1 := net.Pipe()
tokens := make(chan []byte)
prv0s := crypto.FromECDSA(prv0)
pub0s := crypto.FromECDSAPub(pub0)
prv1s := crypto.FromECDSA(prv1)
pub1s := crypto.FromECDSAPub(pub1)
conn1, conn2 := net.Pipe()
initiator := newPeer(conn1, []Protocol{}, nil)
receiver := newPeer(conn2, []Protocol{}, nil)
initiator.dialAddr = &peerAddr{IP: net.ParseIP("1.2.3.4"), Port: 2222, Pubkey: pub1s[1:]}
initiator.privateKey = prv0s
// this is cheating. identity of initiator/dialler not available to listener/receiver
// its public key should be looked up based on IP address
receiver.identity = &peerId{nil, pub0s}
receiver.privateKey = prv1s
initiator.pubkeyHook = func(*peerAddr) error { return nil }
receiver.pubkeyHook = func(*peerAddr) error { return nil }
initiator.cryptoHandshake = true
receiver.cryptoHandshake = true
errc0 := make(chan error, 1)
errc1 := make(chan error, 1)
go func() {
_, err := initiator.loop()
errc0 <- err
token, err := outboundEncHandshake(rw0, prv0, pub1s, nil)
if err != nil {
t.Errorf("outbound side error: %v", err)
}
tokens <- token
}()
go func() {
_, err := receiver.loop()
errc1 <- err
token, remotePubkey, err := inboundEncHandshake(rw1, prv1, nil)
if err != nil {
t.Errorf("inbound side error: %v", err)
}
if !bytes.Equal(remotePubkey, pub0s) {
t.Errorf("inbound side returned wrong remote pubkey\n got: %x\n want: %x", remotePubkey, pub0s)
}
tokens <- token
}()
ready := make(chan bool)
go func() {
<-initiator.cryptoReady
<-receiver.cryptoReady
close(ready)
}()
timeout := time.After(10 * time.Second)
select {
case <-ready:
case <-timeout:
t.Errorf("crypto handshake hanging for too long")
case err = <-errc0:
t.Errorf("peer 0 quit with error: %v", err)
case err = <-errc1:
t.Errorf("peer 1 quit with error: %v", err)
t1, t2 := <-tokens, <-tokens
if !bytes.Equal(t1, t2) {
t.Error("session token mismatch")
}
}