all: unify big.Int zero checks, use common/math in more places (#3716)

* common/math: optimize PaddedBigBytes, use it more

name              old time/op    new time/op    delta
PaddedBigBytes-8    71.1ns ± 5%    46.1ns ± 1%  -35.15%  (p=0.000 n=20+19)

name              old alloc/op   new alloc/op   delta
PaddedBigBytes-8     48.0B ± 0%     32.0B ± 0%  -33.33%  (p=0.000 n=20+20)

* all: unify big.Int zero checks

Various checks were in use. This commit replaces them all with Int.Sign,
which is cheaper and less code.

eg templates:

    func before(x *big.Int) bool { return x.BitLen() == 0 }
    func after(x *big.Int) bool  { return x.Sign() == 0 }

    func before(x *big.Int) bool { return x.BitLen() > 0 }
    func after(x *big.Int) bool  { return x.Sign() != 0 }

    func before(x *big.Int) int { return x.Cmp(common.Big0) }
    func after(x *big.Int) int  { return x.Sign() }

* common/math, crypto/secp256k1: make ReadBits public in package math
This commit is contained in:
Felix Lange
2017-02-28 15:09:11 +01:00
committed by Jeffrey Wilcke
parent d4f60d362b
commit 5f7826270c
30 changed files with 104 additions and 114 deletions

View File

@ -28,6 +28,13 @@ var (
MaxBig256 = new(big.Int).Set(tt256m1)
)
const (
// number of bits in a big.Word
wordBits = 32 << (uint64(^big.Word(0)) >> 63)
// number of bytes in a big.Word
wordBytes = wordBits / 8
)
// ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax.
// Leading zeros are accepted. The empty string parses as zero.
func ParseBig256(s string) (*big.Int, bool) {
@ -91,12 +98,25 @@ func FirstBitSet(v *big.Int) int {
// PaddedBigBytes encodes a big integer as a big-endian byte slice. The length
// of the slice is at least n bytes.
func PaddedBigBytes(bigint *big.Int, n int) []byte {
bytes := bigint.Bytes()
if len(bytes) >= n {
return bytes
if bigint.BitLen()/8 >= n {
return bigint.Bytes()
}
ret := make([]byte, n)
return append(ret[:len(ret)-len(bytes)], bytes...)
ReadBits(bigint, ret)
return ret
}
// ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure
// that buf has enough space. If buf is too short the result will be incomplete.
func ReadBits(bigint *big.Int, buf []byte) {
i := len(buf)
for _, d := range bigint.Bits() {
for j := 0; j < wordBytes && i > 0; j++ {
i--
buf[i] = byte(d)
d >>= 8
}
}
}
// U256 encodes as a 256 bit two's complement number. This operation is destructive.
@ -119,9 +139,6 @@ func S256(x *big.Int) *big.Int {
}
}
// wordSize is the size number of bits in a big.Word.
const wordSize = 32 << (uint64(^big.Word(0)) >> 63)
// Exp implements exponentiation by squaring.
// Exp returns a newly-allocated big integer and does not change
// base or exponent. The result is truncated to 256 bits.
@ -131,7 +148,7 @@ func Exp(base, exponent *big.Int) *big.Int {
result := big.NewInt(1)
for _, word := range exponent.Bits() {
for i := 0; i < wordSize; i++ {
for i := 0; i < wordBits; i++ {
if word&1 == 1 {
U256(result.Mul(result, base))
}