Add versioned dependencies from godep

This commit is contained in:
Taylor Gerring
2015-02-16 14:28:33 +01:00
parent 202362d925
commit 702218008e
667 changed files with 435414 additions and 0 deletions

View File

@@ -0,0 +1,5 @@
/tmp
*/**/*un~
*un~
.DS_Store
*/**/.DS_Store

View File

@@ -0,0 +1,3 @@
[submodule "serp"]
path = serpent
url = https://github.com/ethereum/serpent.git

View File

@@ -0,0 +1,12 @@
[serpent](https://github.com/ethereum/serpent) go bindings.
## Build instructions
```
go get -d github.com/ethereum/serpent-go
cd $GOPATH/src/github.com/ethereum/serpent-go
git submodule init
git submodule update
```
You're now ready to go :-)

View File

@@ -0,0 +1,16 @@
#include "serpent/bignum.cpp"
#include "serpent/util.cpp"
#include "serpent/tokenize.cpp"
#include "serpent/parser.cpp"
#include "serpent/compiler.cpp"
#include "serpent/funcs.cpp"
#include "serpent/lllparser.cpp"
#include "serpent/rewriter.cpp"
#include "serpent/opcodes.cpp"
#include "serpent/optimize.cpp"
#include "serpent/functions.cpp"
#include "serpent/preprocess.cpp"
#include "serpent/rewriteutils.cpp"
#include "cpp/api.cpp"

View File

@@ -0,0 +1,26 @@
#include <string>
#include "serpent/lllparser.h"
#include "serpent/bignum.h"
#include "serpent/util.h"
#include "serpent/tokenize.h"
#include "serpent/parser.h"
#include "serpent/compiler.h"
#include "cpp/api.h"
const char *compileGo(char *code, int *err)
{
try {
std::string c = binToHex(compile(std::string(code)));
return c.c_str();
}
catch(std::string &error) {
*err = 1;
return error.c_str();
}
catch(...) {
return "Unknown error";
}
}

View File

@@ -0,0 +1,14 @@
#ifndef CPP_API_H
#define CPP_API_H
#ifdef __cplusplus
extern "C" {
#endif
const char *compileGo(char *code, int *err);
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,27 @@
package serpent
// #cgo CXXFLAGS: -I. -Ilangs/ -std=c++0x -Wall -fno-strict-aliasing
// #cgo LDFLAGS: -lstdc++
//
// #include "cpp/api.h"
//
import "C"
import (
"encoding/hex"
"errors"
"unsafe"
)
func Compile(str string) ([]byte, error) {
var err C.int
out := C.GoString(C.compileGo(C.CString(str), (*C.int)(unsafe.Pointer(&err))))
if err == C.int(1) {
return nil, errors.New(out)
}
bytes, _ := hex.DecodeString(out)
return bytes, nil
}

View File

@@ -0,0 +1,12 @@
[._]*.s[a-w][a-z]
[._]s[a-w][a-z]
*.un~
Session.vim
.netrwhist
*~
*.o
serpent
libserpent.a
pyserpent.so
dist
*.egg-info

View File

@@ -0,0 +1,5 @@
include *.cpp
include *.h
include *py
include README.md
include Makefile

View File

@@ -0,0 +1,55 @@
PLATFORM_OPTS =
PYTHON = /usr/include/python2.7
CXXFLAGS = -fPIC
# -g3 -O0
BOOST_INC = /usr/include
BOOST_LIB = /usr/lib
TARGET = pyserpent
COMMON_OBJS = bignum.o util.o tokenize.o lllparser.o parser.o opcodes.o optimize.o functions.o rewriteutils.o preprocess.o rewriter.o compiler.o funcs.o
HEADERS = bignum.h util.h tokenize.h lllparser.h parser.h opcodes.h functions.h optimize.h rewriteutils.h preprocess.h rewriter.h compiler.h funcs.h
PYTHON_VERSION = 2.7
serpent : serpentc lib
lib:
ar rvs libserpent.a $(COMMON_OBJS)
g++ $(CXXFLAGS) -shared $(COMMON_OBJS) -o libserpent.so
serpentc: $(COMMON_OBJS) cmdline.o
rm -rf serpent
g++ -Wall $(COMMON_OBJS) cmdline.o -o serpent
bignum.o : bignum.cpp bignum.h
opcodes.o : opcodes.cpp opcodes.h
util.o : util.cpp util.h bignum.o
tokenize.o : tokenize.cpp tokenize.h util.o
lllparser.o : lllparser.cpp lllparser.h tokenize.o util.o
parser.o : parser.cpp parser.h tokenize.o util.o
rewriter.o : rewriter.cpp rewriter.h lllparser.o util.o rewriteutils.o preprocess.o opcodes.o functions.o
preprocessor.o: rewriteutils.o functions.o
compiler.o : compiler.cpp compiler.h util.o
funcs.o : funcs.cpp funcs.h
cmdline.o: cmdline.cpp
pyext.o: pyext.cpp
clean:
rm -f serpent *\.o libserpent.a libserpent.so
install:
cp serpent /usr/local/bin
cp libserpent.a /usr/local/lib
cp libserpent.so /usr/local/lib
rm -rf /usr/local/include/libserpent
mkdir -p /usr/local/include/libserpent
cp $(HEADERS) /usr/local/include/libserpent

View File

@@ -0,0 +1,3 @@
Installation:
```make && sudo make install```

View File

@@ -0,0 +1,112 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "bignum.h"
//Integer to string conversion
std::string unsignedToDecimal(unsigned branch) {
if (branch < 10) return nums.substr(branch, 1);
else return unsignedToDecimal(branch / 10) + nums.substr(branch % 10,1);
}
//Add two strings representing decimal values
std::string decimalAdd(std::string a, std::string b) {
std::string o = a;
while (b.length() < a.length()) b = "0" + b;
while (o.length() < b.length()) o = "0" + o;
bool carry = false;
for (int i = o.length() - 1; i >= 0; i--) {
o[i] = o[i] + b[i] - '0';
if (carry) o[i]++;
if (o[i] > '9') {
o[i] -= 10;
carry = true;
}
else carry = false;
}
if (carry) o = "1" + o;
return o;
}
//Helper function for decimalMul
std::string decimalDigitMul(std::string a, int dig) {
if (dig == 0) return "0";
else return decimalAdd(a, decimalDigitMul(a, dig - 1));
}
//Multiply two strings representing decimal values
std::string decimalMul(std::string a, std::string b) {
std::string o = "0";
for (unsigned i = 0; i < b.length(); i++) {
std::string n = decimalDigitMul(a, b[i] - '0');
if (n != "0") {
for (unsigned j = i + 1; j < b.length(); j++) n += "0";
}
o = decimalAdd(o, n);
}
return o;
}
//Modexp
std::string decimalModExp(std::string b, std::string e, std::string m) {
if (e == "0") return "1";
else if (e == "1") return b;
else if (decimalMod(e, "2") == "0") {
std::string o = decimalModExp(b, decimalDiv(e, "2"), m);
return decimalMod(decimalMul(o, o), m);
}
else {
std::string o = decimalModExp(b, decimalDiv(e, "2"), m);
return decimalMod(decimalMul(decimalMul(o, o), b), m);
}
}
//Is a greater than b? Flag allows equality
bool decimalGt(std::string a, std::string b, bool eqAllowed) {
if (a == b) return eqAllowed;
return (a.length() > b.length()) || (a.length() >= b.length() && a > b);
}
//Subtract the two strings representing decimal values
std::string decimalSub(std::string a, std::string b) {
if (b == "0") return a;
if (b == a) return "0";
while (b.length() < a.length()) b = "0" + b;
std::string c = b;
for (unsigned i = 0; i < c.length(); i++) c[i] = '0' + ('9' - c[i]);
std::string o = decimalAdd(decimalAdd(a, c).substr(1), "1");
while (o.size() > 1 && o[0] == '0') o = o.substr(1);
return o;
}
//Divide the two strings representing decimal values
std::string decimalDiv(std::string a, std::string b) {
std::string c = b;
if (decimalGt(c, a)) return "0";
int zeroes = -1;
while (decimalGt(a, c, true)) {
zeroes += 1;
c = c + "0";
}
c = c.substr(0, c.size() - 1);
std::string quot = "0";
while (decimalGt(a, c, true)) {
a = decimalSub(a, c);
quot = decimalAdd(quot, "1");
}
for (int i = 0; i < zeroes; i++) quot += "0";
return decimalAdd(quot, decimalDiv(a, b));
}
//Modulo the two strings representing decimal values
std::string decimalMod(std::string a, std::string b) {
return decimalSub(a, decimalMul(decimalDiv(a, b), b));
}
//String to int conversion
unsigned decimalToUnsigned(std::string a) {
if (a.size() == 0) return 0;
else return (a[a.size() - 1] - '0')
+ decimalToUnsigned(a.substr(0,a.size()-1)) * 10;
}

View File

@@ -0,0 +1,41 @@
#ifndef ETHSERP_BIGNUM
#define ETHSERP_BIGNUM
const std::string nums = "0123456789";
const std::string tt256 =
"115792089237316195423570985008687907853269984665640564039457584007913129639936"
;
const std::string tt256m1 =
"115792089237316195423570985008687907853269984665640564039457584007913129639935"
;
const std::string tt255 =
"57896044618658097711785492504343953926634992332820282019728792003956564819968";
const std::string tt176 =
"95780971304118053647396689196894323976171195136475136";
std::string unsignedToDecimal(unsigned branch);
std::string decimalAdd(std::string a, std::string b);
std::string decimalMul(std::string a, std::string b);
std::string decimalSub(std::string a, std::string b);
std::string decimalDiv(std::string a, std::string b);
std::string decimalMod(std::string a, std::string b);
std::string decimalModExp(std::string b, std::string e, std::string m);
bool decimalGt(std::string a, std::string b, bool eqAllowed=false);
unsigned decimalToUnsigned(std::string a);
#define utd unsignedToDecimal
#define dtu decimalToUnsigned
#endif

View File

@@ -0,0 +1,132 @@
#include <stdio.h>
#include <string>
#include <iostream>
#include <vector>
#include <map>
#include "funcs.h"
int main(int argv, char** argc) {
if (argv == 1) {
std::cerr << "Must provide a command and arguments! Try parse, rewrite, compile, assemble\n";
return 0;
}
if (argv == 2 && std::string(argc[1]) == "--help" || std::string(argc[1]) == "-h" ) {
std::cout << argc[1] << "\n";
std::cout << "serpent command input\n";
std::cout << "where input -s for from stdin, a file, or interpreted as serpent code if does not exist as file.";
std::cout << "where command: \n";
std::cout << " parse: Just parses and returns s-expression code.\n";
std::cout << " rewrite: Parse, use rewrite rules print s-expressions of result.\n";
std::cout << " compile: Return resulting compiled EVM code in hex.\n";
std::cout << " assemble: Return result from step before compilation.\n";
return 0;
}
std::string flag = "";
std::string command = argc[1];
std::string input;
std::string secondInput;
if (std::string(argc[1]) == "-s") {
flag = command.substr(1);
command = argc[2];
input = "";
std::string line;
while (std::getline(std::cin, line)) {
input += line + "\n";
}
secondInput = argv == 3 ? "" : argc[3];
}
else {
if (argv == 2) {
std::cerr << "Not enough arguments for serpent cmdline\n";
throw(0);
}
input = argc[2];
secondInput = argv == 3 ? "" : argc[3];
}
bool haveSec = secondInput.length() > 0;
if (command == "parse" || command == "parse_serpent") {
std::cout << printAST(parseSerpent(input), haveSec) << "\n";
}
else if (command == "rewrite") {
std::cout << printAST(rewrite(parseLLL(input, true)), haveSec) << "\n";
}
else if (command == "compile_to_lll") {
std::cout << printAST(compileToLLL(input), haveSec) << "\n";
}
else if (command == "rewrite_chunk") {
std::cout << printAST(rewriteChunk(parseLLL(input, true)), haveSec) << "\n";
}
else if (command == "compile_chunk_to_lll") {
std::cout << printAST(compileChunkToLLL(input), haveSec) << "\n";
}
else if (command == "build_fragtree") {
std::cout << printAST(buildFragmentTree(parseLLL(input, true))) << "\n";
}
else if (command == "compile_lll") {
std::cout << binToHex(compileLLL(parseLLL(input, true))) << "\n";
}
else if (command == "dereference") {
std::cout << printAST(dereference(parseLLL(input, true)), haveSec) <<"\n";
}
else if (command == "pretty_assemble") {
std::cout << printTokens(prettyAssemble(parseLLL(input, true))) <<"\n";
}
else if (command == "pretty_compile_lll") {
std::cout << printTokens(prettyCompileLLL(parseLLL(input, true))) << "\n";
}
else if (command == "pretty_compile") {
std::cout << printTokens(prettyCompile(input)) << "\n";
}
else if (command == "pretty_compile_chunk") {
std::cout << printTokens(prettyCompileChunk(input)) << "\n";
}
else if (command == "assemble") {
std::cout << assemble(parseLLL(input, true)) << "\n";
}
else if (command == "serialize") {
std::cout << binToHex(serialize(tokenize(input, Metadata(), false))) << "\n";
}
else if (command == "flatten") {
std::cout << printTokens(flatten(parseLLL(input, true))) << "\n";
}
else if (command == "deserialize") {
std::cout << printTokens(deserialize(hexToBin(input))) << "\n";
}
else if (command == "compile") {
std::cout << binToHex(compile(input)) << "\n";
}
else if (command == "compile_chunk") {
std::cout << binToHex(compileChunk(input)) << "\n";
}
else if (command == "encode_datalist") {
std::vector<Node> tokens = tokenize(input);
std::vector<std::string> o;
for (int i = 0; i < (int)tokens.size(); i++) {
o.push_back(tokens[i].val);
}
std::cout << binToHex(encodeDatalist(o)) << "\n";
}
else if (command == "decode_datalist") {
std::vector<std::string> o = decodeDatalist(hexToBin(input));
std::vector<Node> tokens;
for (int i = 0; i < (int)o.size(); i++)
tokens.push_back(token(o[i]));
std::cout << printTokens(tokens) << "\n";
}
else if (command == "tokenize") {
std::cout << printTokens(tokenize(input));
}
else if (command == "biject") {
if (argv == 3)
std::cerr << "Not enough arguments for biject\n";
int pos = decimalToUnsigned(secondInput);
std::vector<Node> n = prettyCompile(input);
if (pos >= (int)n.size())
std::cerr << "Code position too high\n";
Metadata m = n[pos].metadata;
std::cout << "Opcode: " << n[pos].val << ", file: " << m.file <<
", line: " << m.ln << ", char: " << m.ch << "\n";
}
}

View File

@@ -0,0 +1,554 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "bignum.h"
#include "opcodes.h"
struct programAux {
std::map<std::string, std::string> vars;
int nextVarMem;
bool allocUsed;
bool calldataUsed;
int step;
int labelLength;
};
struct programVerticalAux {
int height;
std::string innerScopeName;
std::map<std::string, int> dupvars;
std::map<std::string, int> funvars;
std::vector<mss> scopes;
};
struct programData {
programAux aux;
Node code;
int outs;
};
programAux Aux() {
programAux o;
o.allocUsed = false;
o.calldataUsed = false;
o.step = 0;
o.nextVarMem = 32;
return o;
}
programVerticalAux verticalAux() {
programVerticalAux o;
o.height = 0;
o.dupvars = std::map<std::string, int>();
o.funvars = std::map<std::string, int>();
o.scopes = std::vector<mss>();
return o;
}
programData pd(programAux aux = Aux(), Node code=token("_"), int outs=0) {
programData o;
o.aux = aux;
o.code = code;
o.outs = outs;
return o;
}
Node multiToken(Node nodes[], int len, Metadata met) {
std::vector<Node> out;
for (int i = 0; i < len; i++) {
out.push_back(nodes[i]);
}
return astnode("_", out, met);
}
Node finalize(programData c);
Node popwrap(Node node) {
Node nodelist[] = {
node,
token("POP", node.metadata)
};
return multiToken(nodelist, 2, node.metadata);
}
// Grabs variables
mss getVariables(Node node, mss cur=mss()) {
Metadata m = node.metadata;
// Tokens don't contain any variables
if (node.type == TOKEN)
return cur;
// Don't descend into call fragments
else if (node.val == "lll")
return getVariables(node.args[1], cur);
// At global scope get/set/ref also declare
else if (node.val == "get" || node.val == "set" || node.val == "ref") {
if (node.args[0].type != TOKEN)
err("Variable name must be simple token,"
" not complex expression!", m);
if (!cur.count(node.args[0].val)) {
cur[node.args[0].val] = utd(cur.size() * 32 + 32);
//std::cerr << node.args[0].val << " " << cur[node.args[0].val] << "\n";
}
}
// Recursively process children
for (unsigned i = 0; i < node.args.size(); i++) {
cur = getVariables(node.args[i], cur);
}
return cur;
}
// Turns LLL tree into tree of code fragments
programData opcodeify(Node node,
programAux aux=Aux(),
programVerticalAux vaux=verticalAux()) {
std::string symb = "_"+mkUniqueToken();
Metadata m = node.metadata;
// Get variables
if (!aux.vars.size()) {
aux.vars = getVariables(node);
aux.nextVarMem = aux.vars.size() * 32 + 32;
}
// Numbers
if (node.type == TOKEN) {
return pd(aux, nodeToNumeric(node), 1);
}
else if (node.val == "ref" || node.val == "get" || node.val == "set") {
std::string varname = node.args[0].val;
// Determine reference to variable
Node varNode = tkn(aux.vars[varname], m);
//std::cerr << varname << " " << printSimple(varNode) << "\n";
// Set variable
if (node.val == "set") {
programData sub = opcodeify(node.args[1], aux, vaux);
if (!sub.outs)
err("Value to set variable must have nonzero arity!", m);
// What if we are setting a stack variable?
if (vaux.dupvars.count(node.args[0].val)) {
int h = vaux.height - vaux.dupvars[node.args[0].val];
if (h > 16) err("Too deep for stack variable (max 16)", m);
Node nodelist[] = {
sub.code,
token("SWAP"+unsignedToDecimal(h), m),
token("POP", m)
};
return pd(sub.aux, multiToken(nodelist, 3, m), 0);
}
// Setting a memory variable
else {
Node nodelist[] = {
sub.code,
varNode,
token("MSTORE", m),
};
return pd(sub.aux, multiToken(nodelist, 3, m), 0);
}
}
// Get variable
else if (node.val == "get") {
// Getting a stack variable
if (vaux.dupvars.count(node.args[0].val)) {
int h = vaux.height - vaux.dupvars[node.args[0].val];
if (h > 16) err("Too deep for stack variable (max 16)", m);
return pd(aux, token("DUP"+unsignedToDecimal(h)), 1);
}
// Getting a memory variable
else {
Node nodelist[] =
{ varNode, token("MLOAD", m) };
return pd(aux, multiToken(nodelist, 2, m), 1);
}
}
// Refer variable
else if (node.val == "ref") {
if (vaux.dupvars.count(node.args[0].val))
err("Cannot ref stack variable!", m);
return pd(aux, varNode, 1);
}
}
// Comments do nothing
else if (node.val == "comment") {
Node nodelist[] = { };
return pd(aux, multiToken(nodelist, 0, m), 0);
}
// Custom operation sequence
// eg. (ops bytez id msize swap1 msize add 0 swap1 mstore) == alloc
if (node.val == "ops") {
std::vector<Node> subs2;
int depth = 0;
for (unsigned i = 0; i < node.args.size(); i++) {
std::string op = upperCase(node.args[i].val);
if (node.args[i].type == ASTNODE || opinputs(op) == -1) {
programVerticalAux vaux2 = vaux;
vaux2.height = vaux.height - i - 1 + node.args.size();
programData sub = opcodeify(node.args[i], aux, vaux2);
aux = sub.aux;
depth += sub.outs;
subs2.push_back(sub.code);
}
else {
subs2.push_back(token(op, m));
depth += opoutputs(op) - opinputs(op);
}
}
if (depth < 0 || depth > 1) err("Stack depth mismatch", m);
return pd(aux, astnode("_", subs2, m), 0);
}
// Code blocks
if (node.val == "lll" && node.args.size() == 2) {
if (node.args[1].val != "0") aux.allocUsed = true;
std::vector<Node> o;
o.push_back(finalize(opcodeify(node.args[0])));
programData sub = opcodeify(node.args[1], aux, vaux);
Node code = astnode("____CODE", o, m);
Node nodelist[] = {
token("$begincode"+symb+".endcode"+symb, m), token("DUP1", m),
token("$begincode"+symb, m), sub.code, token("CODECOPY", m),
token("$endcode"+symb, m), token("JUMP", m),
token("~begincode"+symb, m), code,
token("~endcode"+symb, m), token("JUMPDEST", m)
};
return pd(sub.aux, multiToken(nodelist, 11, m), 1);
}
// Stack variables
if (node.val == "with") {
programData initial = opcodeify(node.args[1], aux, vaux);
programVerticalAux vaux2 = vaux;
vaux2.dupvars[node.args[0].val] = vaux.height;
vaux2.height += 1;
if (!initial.outs)
err("Initial variable value must have nonzero arity!", m);
programData sub = opcodeify(node.args[2], initial.aux, vaux2);
Node nodelist[] = {
initial.code,
sub.code
};
programData o = pd(sub.aux, multiToken(nodelist, 2, m), sub.outs);
if (sub.outs)
o.code.args.push_back(token("SWAP1", m));
o.code.args.push_back(token("POP", m));
return o;
}
// Seq of multiple statements
if (node.val == "seq") {
std::vector<Node> children;
int lastOut = 0;
for (unsigned i = 0; i < node.args.size(); i++) {
programData sub = opcodeify(node.args[i], aux, vaux);
aux = sub.aux;
if (sub.outs == 1) {
if (i < node.args.size() - 1) sub.code = popwrap(sub.code);
else lastOut = 1;
}
children.push_back(sub.code);
}
return pd(aux, astnode("_", children, m), lastOut);
}
// 2-part conditional (if gets rewritten to unless in rewrites)
else if (node.val == "unless" && node.args.size() == 2) {
programData cond = opcodeify(node.args[0], aux, vaux);
programData action = opcodeify(node.args[1], cond.aux, vaux);
aux = action.aux;
if (!cond.outs) err("Condition of if/unless statement has arity 0", m);
if (action.outs) action.code = popwrap(action.code);
Node nodelist[] = {
cond.code,
token("$endif"+symb, m), token("JUMPI", m),
action.code,
token("~endif"+symb, m), token("JUMPDEST", m)
};
return pd(aux, multiToken(nodelist, 6, m), 0);
}
// 3-part conditional
else if (node.val == "if" && node.args.size() == 3) {
programData ifd = opcodeify(node.args[0], aux, vaux);
programData thend = opcodeify(node.args[1], ifd.aux, vaux);
programData elsed = opcodeify(node.args[2], thend.aux, vaux);
aux = elsed.aux;
if (!ifd.outs)
err("Condition of if/unless statement has arity 0", m);
// Handle cases where one conditional outputs something
// and the other does not
int outs = (thend.outs && elsed.outs) ? 1 : 0;
if (thend.outs > outs) thend.code = popwrap(thend.code);
if (elsed.outs > outs) elsed.code = popwrap(elsed.code);
Node nodelist[] = {
ifd.code,
token("ISZERO", m),
token("$else"+symb, m), token("JUMPI", m),
thend.code,
token("$endif"+symb, m), token("JUMP", m),
token("~else"+symb, m), token("JUMPDEST", m),
elsed.code,
token("~endif"+symb, m), token("JUMPDEST", m)
};
return pd(aux, multiToken(nodelist, 12, m), outs);
}
// While (rewritten to this in rewrites)
else if (node.val == "until") {
programData cond = opcodeify(node.args[0], aux, vaux);
programData action = opcodeify(node.args[1], cond.aux, vaux);
aux = action.aux;
if (!cond.outs)
err("Condition of while/until loop has arity 0", m);
if (action.outs) action.code = popwrap(action.code);
Node nodelist[] = {
token("~beg"+symb, m), token("JUMPDEST", m),
cond.code,
token("$end"+symb, m), token("JUMPI", m),
action.code,
token("$beg"+symb, m), token("JUMP", m),
token("~end"+symb, m), token("JUMPDEST", m),
};
return pd(aux, multiToken(nodelist, 10, m));
}
// Memory allocations
else if (node.val == "alloc") {
programData bytez = opcodeify(node.args[0], aux, vaux);
aux = bytez.aux;
if (!bytez.outs)
err("Alloc input has arity 0", m);
aux.allocUsed = true;
Node nodelist[] = {
bytez.code,
token("MSIZE", m), token("SWAP1", m), token("MSIZE", m),
token("ADD", m),
token("0", m), token("SWAP1", m), token("MSTORE", m)
};
return pd(aux, multiToken(nodelist, 8, m), 1);
}
// All other functions/operators
else {
std::vector<Node> subs2;
int depth = opinputs(upperCase(node.val));
if (depth == -1)
err("Not a function or opcode: "+node.val, m);
if ((int)node.args.size() != depth)
err("Invalid arity for "+node.val, m);
for (int i = node.args.size() - 1; i >= 0; i--) {
programVerticalAux vaux2 = vaux;
vaux2.height = vaux.height - i - 1 + node.args.size();
programData sub = opcodeify(node.args[i], aux, vaux2);
aux = sub.aux;
if (!sub.outs)
err("Input "+unsignedToDecimal(i)+" has arity 0", sub.code.metadata);
subs2.push_back(sub.code);
}
subs2.push_back(token(upperCase(node.val), m));
int outdepth = opoutputs(upperCase(node.val));
return pd(aux, astnode("_", subs2, m), outdepth);
}
}
// Adds necessary wrappers to a program
Node finalize(programData c) {
std::vector<Node> bottom;
Metadata m = c.code.metadata;
// If we are using both alloc and variables, we need to pre-zfill
// some memory
if ((c.aux.allocUsed || c.aux.calldataUsed) && c.aux.vars.size() > 0) {
Node nodelist[] = {
token("0", m),
token(unsignedToDecimal(c.aux.nextVarMem - 1)),
token("MSTORE8", m)
};
bottom.push_back(multiToken(nodelist, 3, m));
}
// The actual code
bottom.push_back(c.code);
return astnode("_", bottom, m);
}
//LLL -> code fragment tree
Node buildFragmentTree(Node node) {
return finalize(opcodeify(node));
}
// Builds a dictionary mapping labels to variable names
programAux buildDict(Node program, programAux aux, int labelLength) {
Metadata m = program.metadata;
// Token
if (program.type == TOKEN) {
if (isNumberLike(program)) {
aux.step += 1 + toByteArr(program.val, m).size();
}
else if (program.val[0] == '~') {
aux.vars[program.val.substr(1)] = unsignedToDecimal(aux.step);
}
else if (program.val[0] == '$') {
aux.step += labelLength + 1;
}
else aux.step += 1;
}
// A sub-program (ie. LLL)
else if (program.val == "____CODE") {
programAux auks = Aux();
for (unsigned i = 0; i < program.args.size(); i++) {
auks = buildDict(program.args[i], auks, labelLength);
}
for (std::map<std::string,std::string>::iterator it=auks.vars.begin();
it != auks.vars.end();
it++) {
aux.vars[(*it).first] = (*it).second;
}
aux.step += auks.step;
}
// Normal sub-block
else {
for (unsigned i = 0; i < program.args.size(); i++) {
aux = buildDict(program.args[i], aux, labelLength);
}
}
return aux;
}
// Applies that dictionary
Node substDict(Node program, programAux aux, int labelLength) {
Metadata m = program.metadata;
std::vector<Node> out;
std::vector<Node> inner;
if (program.type == TOKEN) {
if (program.val[0] == '$') {
std::string tokStr = "PUSH"+unsignedToDecimal(labelLength);
out.push_back(token(tokStr, m));
int dotLoc = program.val.find('.');
if (dotLoc == -1) {
std::string val = aux.vars[program.val.substr(1)];
inner = toByteArr(val, m, labelLength);
}
else {
std::string start = aux.vars[program.val.substr(1, dotLoc-1)],
end = aux.vars[program.val.substr(dotLoc + 1)],
dist = decimalSub(end, start);
inner = toByteArr(dist, m, labelLength);
}
out.push_back(astnode("_", inner, m));
}
else if (program.val[0] == '~') { }
else if (isNumberLike(program)) {
inner = toByteArr(program.val, m);
out.push_back(token("PUSH"+unsignedToDecimal(inner.size())));
out.push_back(astnode("_", inner, m));
}
else return program;
}
else {
for (unsigned i = 0; i < program.args.size(); i++) {
Node n = substDict(program.args[i], aux, labelLength);
if (n.type == TOKEN || n.args.size()) out.push_back(n);
}
}
return astnode("_", out, m);
}
// Compiled fragtree -> compiled fragtree without labels
Node dereference(Node program) {
int sz = treeSize(program) * 4;
int labelLength = 1;
while (sz >= 256) { labelLength += 1; sz /= 256; }
programAux aux = buildDict(program, Aux(), labelLength);
return substDict(program, aux, labelLength);
}
// Dereferenced fragtree -> opcodes
std::vector<Node> flatten(Node derefed) {
std::vector<Node> o;
if (derefed.type == TOKEN) {
o.push_back(derefed);
}
else {
for (unsigned i = 0; i < derefed.args.size(); i++) {
std::vector<Node> oprime = flatten(derefed.args[i]);
for (unsigned j = 0; j < oprime.size(); j++) o.push_back(oprime[j]);
}
}
return o;
}
// Opcodes -> bin
std::string serialize(std::vector<Node> codons) {
std::string o;
for (unsigned i = 0; i < codons.size(); i++) {
int v;
if (isNumberLike(codons[i])) {
v = decimalToUnsigned(codons[i].val);
}
else if (codons[i].val.substr(0,4) == "PUSH") {
v = 95 + decimalToUnsigned(codons[i].val.substr(4));
}
else {
v = opcode(codons[i].val);
}
o += (char)v;
}
return o;
}
// Bin -> opcodes
std::vector<Node> deserialize(std::string ser) {
std::vector<Node> o;
int backCount = 0;
for (unsigned i = 0; i < ser.length(); i++) {
unsigned char v = (unsigned char)ser[i];
std::string oper = op((int)v);
if (oper != "" && backCount <= 0) o.push_back(token(oper));
else if (v >= 96 && v < 128 && backCount <= 0) {
o.push_back(token("PUSH"+unsignedToDecimal(v - 95)));
}
else o.push_back(token(unsignedToDecimal(v)));
if (v >= 96 && v < 128 && backCount <= 0) {
backCount = v - 95;
}
else backCount--;
}
return o;
}
// Fragtree -> bin
std::string assemble(Node fragTree) {
return serialize(flatten(dereference(fragTree)));
}
// Fragtree -> tokens
std::vector<Node> prettyAssemble(Node fragTree) {
return flatten(dereference(fragTree));
}
// LLL -> bin
std::string compileLLL(Node program) {
return assemble(buildFragmentTree(program));
}
// LLL -> tokens
std::vector<Node> prettyCompileLLL(Node program) {
return prettyAssemble(buildFragmentTree(program));
}
// Converts a list of integer values to binary transaction data
std::string encodeDatalist(std::vector<std::string> vals) {
std::string o;
for (unsigned i = 0; i < vals.size(); i++) {
std::vector<Node> n = toByteArr(strToNumeric(vals[i]), Metadata(), 32);
for (unsigned j = 0; j < n.size(); j++) {
int v = decimalToUnsigned(n[j].val);
o += (char)v;
}
}
return o;
}
// Converts binary transaction data into a list of integer values
std::vector<std::string> decodeDatalist(std::string ser) {
std::vector<std::string> out;
for (unsigned i = 0; i < ser.length(); i+= 32) {
std::string o = "0";
for (unsigned j = i; j < i + 32; j++) {
int vj = (int)(unsigned char)ser[j];
o = decimalAdd(decimalMul(o, "256"), unsignedToDecimal(vj));
}
out.push_back(o);
}
return out;
}

View File

@@ -0,0 +1,43 @@
#ifndef ETHSERP_COMPILER
#define ETHSERP_COMPILER
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// Compiled fragtree -> compiled fragtree without labels
Node dereference(Node program);
// LLL -> fragtree
Node buildFragmentTree(Node program);
// Dereferenced fragtree -> opcodes
std::vector<Node> flatten(Node derefed);
// opcodes -> bin
std::string serialize(std::vector<Node> codons);
// Fragtree -> bin
std::string assemble(Node fragTree);
// Fragtree -> opcodes
std::vector<Node> prettyAssemble(Node fragTree);
// LLL -> bin
std::string compileLLL(Node program);
// LLL -> opcodes
std::vector<Node> prettyCompileLLL(Node program);
// bin -> opcodes
std::vector<Node> deserialize(std::string ser);
// Converts a list of integer values to binary transaction data
std::string encodeDatalist(std::vector<std::string> vals);
// Converts binary transaction data into a list of integer values
std::vector<std::string> decodeDatalist(std::string ser);
#endif

View File

@@ -0,0 +1,11 @@
#include <libserpent/funcs.h>
#include <libserpent/bignum.h>
#include <iostream>
using namespace std;
int main() {
cout << printAST(compileToLLL(get_file_contents("examples/namecoin.se"))) << "\n";
cout << decimalSub("10234", "10234") << "\n";
cout << decimalSub("10234", "10233") << "\n";
}

View File

@@ -0,0 +1,11 @@
x = msg.data[0]
steps = 0
while x > 1:
steps += 1
if (x % 2) == 0:
x /= 2
else:
x = 3 * x + 1
return(steps)

View File

@@ -0,0 +1,274 @@
# Ethereum forks Counterparty in 340 lines of serpent
# Not yet tested
# assets[i] = a registered asset, assets[i].holders[j] = former or current i-holder
data assets[2^50](creator, name, calldate, callprice, dividend_paid, holders[2^50], holdersCount)
data nextAssetId
# holdersMap: holdersMap[addr][asset] = 1 if addr holds asset
data holdersMap[2^160][2^50]
# balances[x][y] = how much of y x holds
data balances[2^160][2^50]
# orders[a][b] = heap of indices to (c, d, e)
# = c offers to sell d units of a at a price of e units of b per 10^18 units
# of a
data orderbooks[2^50][2^50]
# store of general order data
data orders[2^50](seller, asset_sold, quantity, price)
data ordersCount
# data feeds
data feeds[2^50](owner, value)
data feedCount
# heap
data heap
extern heap: [register, push, pop, top, size]
data cfds[2^50](maker, acceptor, feed, asset, strike, leverage, min, max, maturity)
data cfdCount
data bets[2^50](maker, acceptor, feed, asset, makerstake, acceptorstake, eqtest, maturity)
data betCount
def init():
heap = create('heap.se')
# Add units (internal method)
def add(to, asset, value):
assert msg.sender == self
self.balances[to][asset] += value
# Add the holder to the holders list
if not self.holdersMap[to][asset]:
self.holdersMap[to][asset] = 1
c = self.assets[asset].holdersCount
self.assets[asset].holders[c] = to
self.assets[asset].holdersCount = c + 1
# Register a new asset
def register_asset(q, name, calldate, callprice):
newid = self.nextAssetId
self.assets[newid].creator = msg.sender
self.assets[newid].name = name
self.assets[newid].calldate = calldate
self.assets[newid].callprice = callprice
self.assets[newid].holders[0] = msg.sender
self.assets[newid].holdersCount = 1
self.balances[msg.sender][newid] = q
self.holdersMap[msg.sender][newid] = 1
# Send
def send(to, asset, value):
fromval = self.balances[msg.sender][asset]
if fromval >= value:
self.balances[msg.sender][asset] -= value
self.add(to, asset, value)
# Order
def mkorder(selling, buying, quantity, price):
# Make sure you have enough to pay for the order
assert self.balances[msg.sender][selling] >= quantity:
# Try to match existing orders
o = orderbooks[buying][selling]
if not o:
o = self.heap.register()
orderbooks[selling][buying] = o
sz = self.heap.size(o)
invprice = 10^36 / price
while quantity > 0 and sz > 0:
orderid = self.heap.pop()
p = self.orders[orderid].price
if p > invprice:
sz = 0
else:
q = self.orders[orderid].quantity
oq = min(q, quantity)
b = self.orders[orderid].seller
self.balances[msg.sender][selling] -= oq * p / 10^18
self.add(msg.sender, buying, oq)
self.add(b, selling, oq * p / 10^18)
self.orders[orderid].quantity = q - oq
if oq == q:
self.orders[orderid].seller = 0
self.orders[orderid].price = 0
self.orders[orderid].asset_sold = 0
quantity -= oq
sz -= 1
assert quantity > 0
# Make the order
c = self.ordersCount
self.orders[c].seller = msg.sender
self.orders[c].asset_sold = selling
self.orders[c].quantity = quantity
self.orders[c].price = price
self.ordersCount += 1
# Add it to the heap
o = orderbooks[selling][buying]
if not o:
o = self.heap.register()
orderbooks[selling][buying] = o
self.balances[msg.sender][selling] -= quantity
self.heap.push(o, price, c)
return(c)
def cancel_order(id):
if self.orders[id].seller == msg.sender:
self.orders[id].seller = 0
self.orders[id].price = 0
self.balances[msg.sender][self.orders[id].asset_sold] += self.orders[id].quantity
self.orders[id].quantity = 0
self.orders[id].asset_sold = 0
def register_feed():
c = self.feedCount
self.feeds[c].owner = msg.sender
self.feedCount = c + 1
return(c)
def set_feed(id, v):
if self.feeds[id].owner == msg.sender:
self.feeds[id].value = v
def mk_cfd_offer(feed, asset, strike, leverage, min, max, maturity):
b = self.balances[msg.sender][asset]
req = max((strike - min) * leverage, (strike - max) * leverage)
assert b >= req
self.balances[msg.sender][asset] = b - req
c = self.cfdCount
self.cfds[c].maker = msg.sender
self.cfds[c].feed = feed
self.cfds[c].asset = asset
self.cfds[c].strike = strike
self.cfds[c].leverage = leverage
self.cfds[c].min = min
self.cfds[c].max = max
self.cfds[c].maturity = maturity
self.cfdCount = c + 1
return(c)
def accept_cfd_offer(c):
assert not self.cfds[c].acceptor and self.cfds[c].maker
asset = self.cfds[c].asset
strike = self.cfds[c].strike
min = self.cfds[c].min
max = self.cfds[c].max
leverage = self.cfds[c].leverage
b = self.balances[msg.sender][asset]
req = max((min - strike) * leverage, (max - strike) * leverage)
assert b >= req
self.balances[msg.sender][asset] = b - req
self.cfds[c].acceptor = msg.sender
self.cfds[c].maturity += block.timestamp
def claim_cfd_offer(c):
asset = self.cfds[c].asset
strike = self.cfds[c].strike
min = self.cfds[c].min
max = self.cfds[c].max
leverage = self.cfds[c].leverage
v = self.feeds[self.cfds[c].feed].value
assert v <= min or v >= max or block.timestamp >= self.cfds[c].maturity
maker_req = max((strike - min) * leverage, (strike - max) * leverage)
acceptor_req = max((min - strike) * leverage, (max - strike) * leverage)
paydelta = (strike - v) * leverage
self.add(self.cfds[c].maker, asset, maker_req + paydelta)
self.add(self.cfds[c].acceptor, asset, acceptor_req - paydelta)
self.cfds[c].maker = 0
self.cfds[c].acceptor = 0
self.cfds[c].feed = 0
self.cfds[c].asset = 0
self.cfds[c].strike = 0
self.cfds[c].leverage = 0
self.cfds[c].min = 0
self.cfds[c].max = 0
self.cfds[c].maturity = 0
def withdraw_cfd_offer(c):
if self.cfds[c].maker == msg.sender and not self.cfds[c].acceptor:
asset = self.cfds[c].asset
strike = self.cfds[c].strike
min = self.cfds[c].min
max = self.cfds[c].max
leverage = self.cfds[c].leverage
maker_req = max((strike - min) * leverage, (strike - max) * leverage)
self.balances[self.cfds[c].maker][asset] += maker_req
self.cfds[c].maker = 0
self.cfds[c].acceptor = 0
self.cfds[c].feed = 0
self.cfds[c].asset = 0
self.cfds[c].strike = 0
self.cfds[c].leverage = 0
self.cfds[c].min = 0
self.cfds[c].max = 0
self.cfds[c].maturity = 0
def mk_bet_offer(feed, asset, makerstake, acceptorstake, eqtest, maturity):
assert self.balances[msg.sender][asset] >= makerstake
c = self.betCount
self.bets[c].maker = msg.sender
self.bets[c].feed = feed
self.bets[c].asset = asset
self.bets[c].makerstake = makerstake
self.bets[c].acceptorstake = acceptorstake
self.bets[c].eqtest = eqtest
self.bets[c].maturity = maturity
self.balances[msg.sender][asset] -= makerstake
self.betCount = c + 1
return(c)
def accept_bet_offer(c):
assert self.bets[c].maker and not self.bets[c].acceptor
asset = self.bets[c].asset
acceptorstake = self.bets[c].acceptorstake
assert self.balances[msg.sender][asset] >= acceptorstake
self.balances[msg.sender][asset] -= acceptorstake
self.bets[c].acceptor = msg.sender
def claim_bet_offer(c):
assert block.timestamp >= self.bets[c].maturity
v = self.feeds[self.bets[c].feed].value
totalstake = self.bets[c].makerstake + self.bets[c].acceptorstake
if v == self.bets[c].eqtest:
self.add(self.bets[c].maker, self.bets[c].asset, totalstake)
else:
self.add(self.bets[c].acceptor, self.bets[c].asset, totalstake)
self.bets[c].maker = 0
self.bets[c].feed = 0
self.bets[c].asset = 0
self.bets[c].makerstake = 0
self.bets[c].acceptorstake = 0
self.bets[c].eqtest = 0
self.bets[c].maturity = 0
def cancel_bet(c):
assert not self.bets[c].acceptor and msg.sender == self.bets[c].maker
self.balances[msg.sender][self.bets[c].asset] += self.bets[c].makerstake
self.bets[c].maker = 0
self.bets[c].feed = 0
self.bets[c].asset = 0
self.bets[c].makerstake = 0
self.bets[c].acceptorstake = 0
self.bets[c].eqtest = 0
self.bets[c].maturity = 0
def dividend(holder_asset, divvying_asset, ratio):
i = 0
sz = self.assets[holder_asset].holdersCount
t = 0
holders = array(sz)
payments = array(sz)
while i < sz:
holders[i] = self.assets[holder_asset].holders[i]
payments[i] = self.balances[holders[i]][holder_asset] * ratio / 10^18
t += payments[i]
i += 1
if self.balances[msg.sender][divvying_asset] >= t:
i = 0
while i < sz:
self.add(holders[i], divvying_asset, payments[i])
i += 1
self.balances[msg.sender][divvying_asset] -= t

View File

@@ -0,0 +1,69 @@
data heaps[2^50](owner, size, nodes[2^50](key, value))
data heapIndex
def register():
i = self.heapIndex
self.heaps[i].owner = msg.sender
self.heapIndex = i + 1
return(i)
def push(heap, key, value):
assert msg.sender == self.heaps[heap].owner
sz = self.heaps[heap].size
self.heaps[heap].nodes[sz].key = key
self.heaps[heap].nodes[sz].value = value
k = sz + 1
while k > 1:
bottom = self.heaps[heap].nodes[k].key
top = self.heaps[heap].nodes[k/2].key
if bottom < top:
tvalue = self.heaps[heap].nodes[k/2].value
bvalue = self.heaps[heap].nodes[k].value
self.heaps[heap].nodes[k].key = top
self.heaps[heap].nodes[k].value = tvalue
self.heaps[heap].nodes[k/2].key = bottom
self.heaps[heap].nodes[k/2].value = bvalue
k /= 2
else:
k = 0
self.heaps[heap].size = sz + 1
def pop(heap):
sz = self.heaps[heap].size
assert sz
prevtop = self.heaps[heap].nodes[1].value
self.heaps[heap].nodes[1].key = self.heaps[heap].nodes[sz].key
self.heaps[heap].nodes[1].value = self.heaps[heap].nodes[sz].value
self.heaps[heap].nodes[sz].key = 0
self.heaps[heap].nodes[sz].value = 0
top = self.heaps[heap].nodes[1].key
k = 1
while k * 2 < sz:
bottom1 = self.heaps[heap].nodes[k * 2].key
bottom2 = self.heaps[heap].nodes[k * 2 + 1].key
if bottom1 < top and (bottom1 < bottom2 or k * 2 + 1 >= sz):
tvalue = self.heaps[heap].nodes[1].value
bvalue = self.heaps[heap].nodes[k * 2].value
self.heaps[heap].nodes[k].key = bottom1
self.heaps[heap].nodes[k].value = bvalue
self.heaps[heap].nodes[k * 2].key = top
self.heaps[heap].nodes[k * 2].value = tvalue
k = k * 2
elif bottom2 < top and bottom2 < bottom1 and k * 2 + 1 < sz:
tvalue = self.heaps[heap].nodes[1].value
bvalue = self.heaps[heap].nodes[k * 2 + 1].value
self.heaps[heap].nodes[k].key = bottom2
self.heaps[heap].nodes[k].value = bvalue
self.heaps[heap].nodes[k * 2 + 1].key = top
self.heaps[heap].nodes[k * 2 + 1].value = tvalue
k = k * 2 + 1
else:
k = sz
self.heaps[heap].size = sz - 1
return(prevtop)
def top(heap):
return(self.heaps[heap].nodes[1].value)
def size(heap):
return(self.heaps[heap].size)

View File

@@ -0,0 +1,53 @@
data campaigns[2^80](recipient, goal, deadline, contrib_total, contrib_count, contribs[2^50](sender, value))
def create_campaign(id, recipient, goal, timelimit):
if self.campaigns[id].recipient:
return(0)
self.campaigns[id].recipient = recipient
self.campaigns[id].goal = goal
self.campaigns[id].deadline = block.timestamp + timelimit
def contribute(id):
# Update contribution total
total_contributed = self.campaigns[id].contrib_total + msg.value
self.campaigns[id].contrib_total = total_contributed
# Record new contribution
sub_index = self.campaigns[id].contrib_count
self.campaigns[id].contribs[sub_index].sender = msg.sender
self.campaigns[id].contribs[sub_index].value = msg.value
self.campaigns[id].contrib_count = sub_index + 1
# Enough funding?
if total_contributed >= self.campaigns[id].goal:
send(self.campaigns[id].recipient, total_contributed)
self.clear(id)
return(1)
# Expired?
if block.timestamp > self.campaigns[id].deadline:
i = 0
c = self.campaigns[id].contrib_count
while i < c:
send(self.campaigns[id].contribs[i].sender, self.campaigns[id].contribs[i].value)
i += 1
self.clear(id)
return(2)
def progress_report(id):
return(self.campaigns[id].contrib_total)
# Clearing function for internal use
def clear(id):
if self == msg.sender:
self.campaigns[id].recipient = 0
self.campaigns[id].goal = 0
self.campaigns[id].deadline = 0
c = self.campaigns[id].contrib_count
self.campaigns[id].contrib_count = 0
self.campaigns[id].contrib_total = 0
i = 0
while i < c:
self.campaigns[id].contribs[i].sender = 0
self.campaigns[id].contribs[i].value = 0
i += 1

View File

@@ -0,0 +1,136 @@
# 0: current epoch
# 1: number of proposals
# 2: master currency
# 3: last winning market
# 4: last txid
# 5: long-term ema currency units purchased
# 6: last block when currency units purchased
# 7: ether allocated to last round
# 8: last block when currency units claimed
# 9: ether allocated to current round
# 1000+: [proposal address, market ID, totprice, totvolume]
init:
# We technically have two levels of epoch here. We have
# one epoch of 1000, to synchronize with the 1000 epoch
# of the market, and then 100 of those epochs make a
# meta-epoch (I'll nominate the term "seculum") over
# which the futarchy protocol will take place
contract.storage[0] = block.number / 1000
# The master currency of the futarchy. The futarchy will
# assign currency units to whoever the prediction market
# thinks will best increase the currency's value
master_currency = create('subcurrency.se')
contract.storage[2] = master_currency
code:
curepoch = block.number / 1000
prevepoch = contract.storage[0]
if curepoch > prevepoch:
if (curepoch % 100) > 50:
# Collect price data
# We take an average over 50 subepochs to determine
# the price of each asset, weighting by volume to
# prevent abuse
contract.storage[0] = curepoch
i = 0
numprop = contract.storage[1]
while i < numprop:
market = contract.storage[1001 + i * 4]
price = call(market, 2)
volume = call(market, 3)
contract.storage[1002 + i * 4] += price
contract.storage[1003 + i * 4] += volume * price
i += 1
if (curepoch / 100) > (prevepoch / 100):
# If we are entering a new seculum, we determine the
# market with the highest total average price
best = 0
bestmarket = 0
besti = 0
i = 0
while i < numprop:
curtotprice = contract.storage[1002 + i * 4]
curvolume = contract.storage[1002 + i * 4]
curavgprice = curtotprice / curvolume
if curavgprice > best:
best = curavgprice
besti = i
bestmarket = contract.storage[1003 + i * 4]
i += 1
# Reset the number of proposals to 0
contract.storage[1] = 0
# Reward the highest proposal
call(contract.storage[2], [best, 10^9, 0], 3)
# Record the winning market so we can later appropriately
# compensate the participants
contract.storage[2] = bestmarket
# The amount of ether allocated to the last round
contract.storage[7] = contract.storage[9]
# The amount of ether allocated to the next round
contract.storage[9] = contract.balance / 2
# Make a proposal [0, address]
if msg.data[0] == 0 and curepoch % 100 < 50:
pid = contract.storage[1]
market = create('market.se')
c1 = create('subcurrency.se')
c2 = create('subcurrency.se')
call(market, [c1, c2], 2)
contract.storage[1000 + pid * 4] = msg.data[1]
contract.storage[1001 + pid * 4] = market
contract.storage[1] += 1
# Claim ether [1, address]
# One unit of the first currency in the last round's winning
# market entitles you to a quantity of ether that was decided
# at the start of that epoch
elif msg.data[0] == 1:
first_subcurrency = call(contract.storage[2], 3)
# We ask the first subcurrency contract what the last transaction was. The
# way to make a claim is to send the amount of first currency units that
# you wish to claim with, and then immediately call this contract. For security
# it makes sense to set up a tx which sends both messages in sequence atomically
data = call(first_subcurrency, [], 0, 4)
from = data[0]
to = data[1]
value = data[2]
txid = data[3]
if txid > contract.storage[4] and to == contract.address:
send(to, contract.storage[7] * value / 10^9)
contract.storage[4] = txid
# Claim second currency [2, address]
# One unit of the second currency in the last round's winning
# market entitles you to one unit of the futarchy's master
# currency
elif msg.data[0] == 2:
second_subcurrency = call(contract.storage[2], 3)
data = call(first_subcurrency, [], 0, 4)
from = data[0]
to = data[1]
value = data[2]
txid = data[3]
if txid > contract.storage[4] and to == contract.address:
call(contract.storage[2], [to, value], 2)
contract.storage[4] = txid
# Purchase currency for ether (target releasing 10^9 units per seculum)
# Price starts off 1 eth for 10^9 units but increases hyperbolically to
# limit issuance
elif msg.data[0] == 3:
pre_ema = contract.storage[5]
post_ema = pre_ema + msg.value
pre_reserve = 10^18 / (10^9 + pre_ema / 10^9)
post_reserve = 10^18 / (10^9 + post_ema / 10^9)
call(contract.storage[2], [msg.sender, pre_reserve - post_reserve], 2)
last_sold = contract.storage[6]
contract.storage[5] = pre_ema * (100000 + last_sold - block.number) + msg.value
contract.storage[6] = block.number
# Claim all currencies as the ether miner of the current block
elif msg.data[0] == 2 and msg.sender == block.coinbase and block.number > contract.storage[8]:
i = 0
numproposals = contract.storage[1]
while i < numproposals:
market = contract.storage[1001 + i * 3]
fc = call(market, 4)
sc = call(market, 5)
call(fc, [msg.sender, 1000], 2)
call(sc, [msg.sender, 1000], 2)
i += 1
contract.storage[8] = block.number

View File

@@ -0,0 +1,55 @@
# 0: size
# 1-n: elements
init:
contract.storage[1000] = msg.sender
code:
# Only owner of the heap is allowed to modify it
if contract.storage[1000] != msg.sender:
stop
# push
if msg.data[0] == 0:
sz = contract.storage[0]
contract.storage[sz + 1] = msg.data[1]
k = sz + 1
while k > 1:
bottom = contract.storage[k]
top = contract.storage[k/2]
if bottom < top:
contract.storage[k] = top
contract.storage[k/2] = bottom
k /= 2
else:
k = 0
contract.storage[0] = sz + 1
# pop
elif msg.data[0] == 1:
sz = contract.storage[0]
if !sz:
return(0)
prevtop = contract.storage[1]
contract.storage[1] = contract.storage[sz]
contract.storage[sz] = 0
top = contract.storage[1]
k = 1
while k * 2 < sz:
bottom1 = contract.storage[k * 2]
bottom2 = contract.storage[k * 2 + 1]
if bottom1 < top and (bottom1 < bottom2 or k * 2 + 1 >= sz):
contract.storage[k] = bottom1
contract.storage[k * 2] = top
k = k * 2
elif bottom2 < top and bottom2 < bottom1 and k * 2 + 1 < sz:
contract.storage[k] = bottom2
contract.storage[k * 2 + 1] = top
k = k * 2 + 1
else:
k = sz
contract.storage[0] = sz - 1
return(prevtop)
# top
elif msg.data[0] == 2:
return(contract.storage[1])
# size
elif msg.data[0] == 3:
return(contract.storage[0])

View File

@@ -0,0 +1,117 @@
# Creates a decentralized market between any two subcurrencies
# Here, the first subcurrency is the base asset and the second
# subcurrency is the asset priced against the base asset. Hence,
# "buying" refers to trading the first for the second, and
# "selling" refers to trading the second for the first
# storage 0: buy orders
# storage 1: sell orders
# storage 1000: first subcurrency
# storage 1001: last first subcurrency txid
# storage 2000: second subcurrency
# storage 2001: last second subcurrency txid
# storage 3000: current epoch
# storage 4000: price
# storage 4001: volume
init:
# Heap for buy orders
contract.storage[0] = create('heap.se')
# Heap for sell orders
contract.storage[1] = create('heap.se')
code:
# Initialize with [ first_subcurrency, second_subcurrency ]
if !contract.storage[1000]:
contract.storage[1000] = msg.data[0] # First subcurrency
contract.storage[1001] = -1
contract.storage[2000] = msg.data[1] # Second subcurrency
contract.storage[2001] = -1
contract.storage[3000] = block.number / 1000
stop
first_subcurrency = contract.storage[1000]
second_subcurrency = contract.storage[2000]
buy_heap = contract.storage[0]
sell_heap = contract.storage[1]
# This contract operates in "epochs" of 100 blocks
# At the end of each epoch, we process all orders
# simultaneously, independent of order. This algorithm
# prevents front-running, and generates a profit from
# the spread. The profit is permanently kept in the
# market (ie. destroyed), making both subcurrencies
# more valuable
# Epoch transition code
if contract.storage[3000] < block.number / 100:
done = 0
volume = 0
while !done:
# Grab the top buy and sell order from each heap
topbuy = call(buy_heap, 1)
topsell = call(sell_heap, 1)
# An order is recorded in the heap as:
# Buys: (2^48 - 1 - price) * 2^208 + units of first currency * 2^160 + from
# Sells: price * 2^208 + units of second currency * 2^160 + from
buyprice = -(topbuy / 2^208)
buyfcvalue = (topbuy / 2^160) % 2^48
buyer = topbuy % 2^160
sellprice = topsell / 2^208
sellscvalue = (topsell / 2^160) % 2^48
seller = topsell % 2^160
# Heap empty, or no more matching orders
if not topbuy or not topsell or buyprice < sellprice:
done = 1
else:
# Add to volume counter
volume += buyfcvalue
# Calculate how much of the second currency the buyer gets, and
# how much of the first currency the seller gets
sellfcvalue = sellscvalue / buyprice
buyscvalue = buyfcvalue * sellprice
# Send the currency units along
call(second_subcurrency, [buyer, buyscvalue], 2)
call(first_subcurrency, [seller, sellfcvalue], 2)
if volume:
contract.storage[4000] = (buyprice + sellprice) / 2
contract.storage[4001] = volume
contract.storage[3000] = block.number / 100
# Make buy order [0, price]
if msg.data[0] == 0:
# We ask the first subcurrency contract what the last transaction was. The
# way to make a buy order is to send the amount of first currency units that
# you wish to buy with, and then immediately call this contract. For security
# it makes sense to set up a tx which sends both messages in sequence atomically
data = call(first_subcurrency, [], 0, 4)
from = data[0]
to = data[1]
value = data[2]
txid = data[3]
price = msg.data[1]
if txid > contract.storage[1001] and to == contract.address:
contract.storage[1001] = txid
# Adds the order to the heap
call(buy_heap, [0, -price * 2^208 + (value % 2^48) * 2^160 + from], 2)
# Make sell order [1, price]
elif msg.data[0] == 1:
# Same mechanics as buying
data = call(second_subcurrency, [], 0, 4)
from = data[0]
to = data[1]
value = data[2]
txid = data[3]
price = msg.data[1]
if txid > contract.storage[2001] and to == contract.address:
contract.storage[2001] = txid
call(sell_heap, [0, price * 2^208 + (value % 2^48) * 2^160 + from], 2)
# Ask for price
elif msg.data[0] == 2:
return(contract.storage[4000])
# Ask for volume
elif msg.data[0] == 3:
return(contract.storage[1000])
# Ask for first currency
elif msg.data[0] == 4:
return(contract.storage[2000])
# Ask for second currency
elif msg.data[0] == 5:
return(contract.storage[4001])

View File

@@ -0,0 +1,35 @@
# Initialization
# Admin can issue and delete at will
init:
contract.storage[0] = msg.sender
code:
# If a message with one item is sent, that's a balance query
if msg.datasize == 1:
addr = msg.data[0]
return(contract.storage[addr])
# If a message with two items [to, value] are sent, that's a transfer request
elif msg.datasize == 2:
from = msg.sender
fromvalue = contract.storage[from]
to = msg.data[0]
value = msg.data[1]
if fromvalue >= value and value > 0 and to > 4:
contract.storage[from] = fromvalue - value
contract.storage[to] += value
contract.storage[2] = from
contract.storage[3] = to
contract.storage[4] = value
contract.storage[5] += 1
return(1)
return(0)
elif msg.datasize == 3 and msg.sender == contract.storage[0]:
# Admin can issue at will by sending a [to, value, 0] message
if msg.data[2] == 0:
contract.storage[msg.data[0]] += msg.data[1]
# Change admin [ newadmin, 0, 1 ]
# Set admin to 0 to disable administration
elif msg.data[2] == 1:
contract.storage[0] = msg.data[0]
# Fetch last transaction
else:
return([contract.storage[2], contract.storage[3], contract.storage[4], contract.storage[5]], 4)

View File

@@ -0,0 +1,39 @@
from __future__ import print_function
import pyethereum
t = pyethereum.tester
s = t.state()
# Create currencies
c1 = s.contract('subcurrency.se')
print("First currency: %s" % c1)
c2 = s.contract('subcurrency.se')
print("First currency: %s" % c2)
# Allocate units
s.send(t.k0, c1, 0, [t.a0, 1000, 0])
s.send(t.k0, c1, 0, [t.a1, 1000, 0])
s.send(t.k0, c2, 0, [t.a2, 1000000, 0])
s.send(t.k0, c2, 0, [t.a3, 1000000, 0])
print("Allocated units")
# Market
m = s.contract('market.se')
s.send(t.k0, m, 0, [c1, c2])
# Place orders
s.send(t.k0, c1, 0, [m, 1000])
s.send(t.k0, m, 0, [0, 1200])
s.send(t.k1, c1, 0, [m, 1000])
s.send(t.k1, m, 0, [0, 1400])
s.send(t.k2, c2, 0, [m, 1000000])
s.send(t.k2, m, 0, [1, 800])
s.send(t.k3, c2, 0, [m, 1000000])
s.send(t.k3, m, 0, [1, 600])
print("Orders placed")
# Next epoch and ping
s.mine(100)
print("Mined 100")
s.send(t.k0, m, 0, [])
print("Updating")
# Check
assert s.send(t.k0, c2, 0, [t.a0]) == [800000]
assert s.send(t.k0, c2, 0, [t.a1]) == [600000]
assert s.send(t.k0, c1, 0, [t.a2]) == [833]
assert s.send(t.k0, c1, 0, [t.a3]) == [714]
print("Balance checks passed")

View File

@@ -0,0 +1,12 @@
# Database updateable only by the original creator
data creator
def init():
self.creator = msg.sender
def update(k, v):
if msg.sender == self.creator:
self.storage[k] = v
def query(k):
return(self.storage[k])

View File

@@ -0,0 +1,40 @@
# So I looked up on Wikipedia what Jacobian form actually is, and noticed that it's
# actually a rather different and more clever construction than the naive version
# that I created. It may possible to achieve a further 20-50% savings by applying
# that version.
extern all: [call]
data JORDANMUL
data JORDANADD
data EXP
def init():
self.JORDANMUL = create('jacobian_mul.se')
self.JORDANADD = create('jacobian_add.se')
self.EXP = create('modexp.se')
def call(h, v, r, s):
N = -432420386565659656852420866394968145599
P = -4294968273
h = mod(h, N)
r = mod(r, P)
s = mod(s, N)
Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424
x = r
xcubed = mulmod(mulmod(x, x, P), x, P)
beta = self.EXP.call(addmod(xcubed, 7, P), div(P + 1, 4), P)
# Static-gascost ghetto conditional
y_is_positive = mod(v, 2) xor mod(beta, 2)
y = beta * y_is_positive + (P - beta) * (1 - y_is_positive)
GZ = self.JORDANMUL.call(Gx, 1, Gy, 1, N - h, outsz=4)
XY = self.JORDANMUL.call(x, 1, y, 1, s, outsz=4)
COMB = self.JORDANADD.call(GZ[0], GZ[1], GZ[2], GZ[3], XY[0], XY[1], XY[2], XY[3], 1, outsz=5)
COMB[4] = self.EXP.call(r, N - 2, N)
Q = self.JORDANMUL.call(data=COMB, datasz=5, outsz=4)
ox = mulmod(Q[0], self.EXP.call(Q[1], P - 2, P), P)
oy = mulmod(Q[2], self.EXP.call(Q[3], P - 2, P), P)
return([ox, oy], 2)

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,32 @@
extern all: [call]
data DOUBLE
def init():
self.DOUBLE = create('jacobian_double.se')
def call(axn, axd, ayn, ayd, bxn, bxd, byn, byd):
if !axn and !ayn:
o = [bxn, bxd, byn, byd]
if !bxn and !byn:
o = [axn, axd, ayn, ayd]
if o:
return(o, 4)
with P = -4294968273:
if addmod(mulmod(axn, bxd, P), P - mulmod(axd, bxn, P), P) == 0:
if addmod(mulmod(ayn, byd, P), P - mulmod(ayd, byn, P), P) == 0:
return(self.DOUBLE.call(axn, axd, ayn, ayd, outsz=4), 4)
else:
return([0, 1, 0, 1], 4)
with mn = mulmod(addmod(mulmod(byn, ayd, P), P - mulmod(ayn, byd, P), P), mulmod(bxd, axd, P), P):
with md = mulmod(mulmod(byd, ayd, P), addmod(mulmod(bxn, axd, P), P - mulmod(axn, bxd, P), P), P):
with msqn = mulmod(mn, mn, P):
with msqd = mulmod(md, md, P):
with msqman = addmod(mulmod(msqn, axd, P), P - mulmod(msqd, axn, P), P):
with msqmad = mulmod(msqd, axd, P):
with xn = addmod(mulmod(msqman, bxd, P), P - mulmod(msqmad, bxn, P), P):
with xd = mulmod(msqmad, bxd, P):
with mamxn = mulmod(mn, addmod(mulmod(axn, xd, P), P - mulmod(xn, axd, P), P), P):
with mamxd = mulmod(md, mulmod(axd, xd, P), P):
with yn = addmod(mulmod(mamxn, ayd, P), P - mulmod(mamxd, ayn, P), P):
with yd = mulmod(mamxd, ayd, P):
return([xn, xd, yn, yd], 4)

View File

@@ -0,0 +1,16 @@
def call(axn, axd, ayn, ayd):
if !axn and !ayn:
return([0, 1, 0, 1], 4)
with P = -4294968273:
# No need to add (A, 1) because A = 0 for bitcoin
with mn = mulmod(mulmod(mulmod(axn, axn, P), 3, P), ayd, P):
with md = mulmod(mulmod(axd, axd, P), mulmod(ayn, 2, P), P):
with msqn = mulmod(mn, mn, P):
with msqd = mulmod(md, md, P):
with xn = addmod(mulmod(msqn, axd, P), P - mulmod(msqd, mulmod(axn, 2, P), P), P):
with xd = mulmod(msqd, axd, P):
with mamxn = mulmod(addmod(mulmod(axn, xd, P), P - mulmod(axd, xn, P), P), mn, P):
with mamxd = mulmod(mulmod(axd, xd, P), md, P):
with yn = addmod(mulmod(mamxn, ayd, P), P - mulmod(mamxd, ayn, P), P):
with yd = mulmod(mamxd, ayd, P):
return([xn, xd, yn, yd], 4)

View File

@@ -0,0 +1,37 @@
# Expected gas cost
#
# def expect(n, point_at_infinity=False):
# n = n % (2**256 - 432420386565659656852420866394968145599)
# if point_at_infinity:
# return 79
# if n == 0:
# return 34479
# L = int(1 + math.log(n) / math.log(2))
# H = len([x for x in b.encode(n, 2) if x == '1'])
# return 34221 + 94 * L + 343 * H
data DOUBLE
data ADD
def init():
self.DOUBLE = create('jacobian_double.se')
self.ADD = create('jacobian_add.se')
def call(axn, axd, ayn, ayd, n):
n = mod(n, -432420386565659656852420866394968145599)
if !axn * !ayn + !n: # Constant-gas version of !axn and !ayn or !n
return([0, 1, 0, 1], 4)
with o = [0, 0, 1, 0, 1, 0, 0, 0, 0]:
with b = 2 ^ 255:
while gt(b, 0):
if n & b:
~call(20000, self.DOUBLE, 0, o + 31, 129, o + 32, 128)
o[5] = axn
o[6] = axd
o[7] = ayn
o[8] = ayd
~call(20000, self.ADD, 0, o + 31, 257, o + 32, 128)
else:
~call(20000, self.DOUBLE, 0, o + 31, 129, o + 32, 128)
b = div(b, 2)
return(o + 32, 4)

View File

@@ -0,0 +1,11 @@
def call(b, e, m):
with o = 1:
with bit = 2 ^ 255:
while gt(bit, 0):
# A touch of loop unrolling for 20% efficiency gain
o = mulmod(mulmod(o, o, m), b ^ !(!(e & bit)), m)
o = mulmod(mulmod(o, o, m), b ^ !(!(e & div(bit, 2))), m)
o = mulmod(mulmod(o, o, m), b ^ !(!(e & div(bit, 4))), m)
o = mulmod(mulmod(o, o, m), b ^ !(!(e & div(bit, 8))), m)
bit = div(bit, 16)
return(o)

View File

@@ -0,0 +1,78 @@
import bitcoin as b
import math
import sys
def signed(o):
return map(lambda x: x - 2**256 if x >= 2**255 else x, o)
def hamming_weight(n):
return len([x for x in b.encode(n, 2) if x == '1'])
def binary_length(n):
return len(b.encode(n, 2))
def jacobian_mul_substitute(A, B, C, D, N):
if A == 0 and C == 0 or (N % b.N) == 0:
return {"gas": 86, "output": [0, 1, 0, 1]}
else:
output = b.jordan_multiply(((A, B), (C, D)), N)
return {
"gas": 35262 + 95 * binary_length(N % b.N) + 355 * hamming_weight(N % b.N),
"output": signed(list(output[0]) + list(output[1]))
}
def jacobian_add_substitute(A, B, C, D, E, F, G, H):
if A == 0 or E == 0:
gas = 149
elif (A * F - B * E) % b.P == 0:
if (C * H - D * G) % b.P == 0:
gas = 442
else:
gas = 177
else:
gas = 301
output = b.jordan_add(((A, B), (C, D)), ((E, F), (G, H)))
return {
"gas": gas,
"output": signed(list(output[0]) + list(output[1]))
}
def modexp_substitute(base, exp, mod):
return {
"gas": 5150,
"output": signed([pow(base, exp, mod) if mod > 0 else 0])
}
def ecrecover_substitute(z, v, r, s):
P, A, B, N, Gx, Gy = b.P, b.A, b.B, b.N, b.Gx, b.Gy
x = r
beta = pow(x*x*x+A*x+B, (P + 1) / 4, P)
BETA_PREMIUM = modexp_substitute(x, (P + 1) / 4, P)["gas"]
y = beta if v % 2 ^ beta % 2 else (P - beta)
Gz = b.jordan_multiply(((Gx, 1), (Gy, 1)), (N - z) % N)
GZ_PREMIUM = jacobian_mul_substitute(Gx, 1, Gy, 1, (N - z) % N)["gas"]
XY = b.jordan_multiply(((x, 1), (y, 1)), s)
XY_PREMIUM = jacobian_mul_substitute(x, 1, y, 1, s % N)["gas"]
Qr = b.jordan_add(Gz, XY)
QR_PREMIUM = jacobian_add_substitute(Gz[0][0], Gz[0][1], Gz[1][0], Gz[1][1],
XY[0][0], XY[0][1], XY[1][0], XY[1][1]
)["gas"]
Q = b.jordan_multiply(Qr, pow(r, N - 2, N))
Q_PREMIUM = jacobian_mul_substitute(Qr[0][0], Qr[0][1], Qr[1][0], Qr[1][1],
pow(r, N - 2, N))["gas"]
R_PREMIUM = modexp_substitute(r, N - 2, N)["gas"]
OX_PREMIUM = modexp_substitute(Q[0][1], P - 2, P)["gas"]
OY_PREMIUM = modexp_substitute(Q[1][1], P - 2, P)["gas"]
Q = b.from_jordan(Q)
return {
"gas": 991 + BETA_PREMIUM + GZ_PREMIUM + XY_PREMIUM + QR_PREMIUM +
Q_PREMIUM + R_PREMIUM + OX_PREMIUM + OY_PREMIUM,
"output": signed(Q)
}

View File

@@ -0,0 +1,129 @@
import bitcoin as b
import random
import sys
import math
from pyethereum import tester as t
import substitutes
import time
vals = [random.randrange(2**256) for i in range(12)]
test_points = [list(p[0]) + list(p[1]) for p in
[b.jordan_multiply(((b.Gx, 1), (b.Gy, 1)), r) for r in vals]]
G = [b.Gx, 1, b.Gy, 1]
Z = [0, 1, 0, 1]
def neg_point(p):
return [p[0], b.P - p[1], p[2], b.P - p[3]]
s = t.state()
s.block.gas_limit = 10000000
t.gas_limit = 1000000
c = s.contract('modexp.se')
print "Starting modexp tests"
for i in range(0, len(vals) - 2, 3):
o1 = substitutes.modexp_substitute(vals[i], vals[i+1], vals[i+2])
o2 = s.profile(t.k0, c, 0, funid=0, abi=vals[i:i+3])
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
c = s.contract('jacobian_add.se')
print "Starting addition tests"
for i in range(2):
P = test_points[i * 2]
Q = test_points[i * 2 + 1]
NP = neg_point(P)
o1 = substitutes.jacobian_add_substitute(*(P + Q))
o2 = s.profile(t.k0, c, 0, funid=0, abi=P + Q)
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
o1 = substitutes.jacobian_add_substitute(*(P + NP))
o2 = s.profile(t.k0, c, 0, funid=0, abi=P + NP)
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
o1 = substitutes.jacobian_add_substitute(*(P + P))
o2 = s.profile(t.k0, c, 0, funid=0, abi=P + P)
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
o1 = substitutes.jacobian_add_substitute(*(P + Z))
o2 = s.profile(t.k0, c, 0, funid=0, abi=P + Z)
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
o1 = substitutes.jacobian_add_substitute(*(Z + P))
o2 = s.profile(t.k0, c, 0, funid=0, abi=Z + P)
#assert o1["gas"] == o2["gas"], (o1, o2)
assert o1["output"] == o2["output"], (o1, o2)
c = s.contract('jacobian_mul.se')
print "Starting multiplication tests"
mul_tests = [
Z + [0],
Z + [vals[0]],
test_points[0] + [0],
test_points[1] + [b.N],
test_points[2] + [1],
test_points[2] + [2],
test_points[2] + [3],
test_points[2] + [4],
test_points[3] + [5],
test_points[3] + [6],
test_points[4] + [7],
test_points[4] + [2**254],
test_points[4] + [vals[1]],
test_points[4] + [vals[2]],
test_points[4] + [vals[3]],
test_points[5] + [2**256 - 1],
]
for i, test in enumerate(mul_tests):
print 'trying mul_test %i' % i, test
o1 = substitutes.jacobian_mul_substitute(*test)
o2 = s.profile(t.k0, c, 0, funid=0, abi=test)
# assert o1["gas"] == o2["gas"], (o1, o2, test)
assert o1["output"] == o2["output"], (o1, o2, test)
c = s.contract('ecrecover.se')
print "Starting ecrecover tests"
for i in range(5):
print 'trying ecrecover_test', vals[i*2], vals[i*2+1]
k = vals[i*2]
h = vals[i*2+1]
V, R, S = b.ecdsa_raw_sign(b.encode(h, 256, 32), k)
aa = time.time()
o1 = substitutes.ecrecover_substitute(h, V, R, S)
print 'sub', time.time() - aa
a = time.time()
o2 = s.profile(t.k0, c, 0, funid=0, abi=[h, V, R, S])
print time.time() - a
# assert o1["gas"] == o2["gas"], (o1, o2, h, V, R, S)
assert o1["output"] == o2["output"], (o1, o2, h, V, R, S)
# Explicit tests
data = [[
0xf007a9c78a4b2213220adaaf50c89a49d533fbefe09d52bbf9b0da55b0b90b60,
0x1b,
0x5228fc9e2fabfe470c32f459f4dc17ef6a0a81026e57e4d61abc3bc268fc92b5,
0x697d4221cd7bc5943b482173de95d3114b9f54c5f37cc7f02c6910c6dd8bd107
]]
for datum in data:
o1 = substitutes.ecrecover_substitute(*datum)
o2 = s.profile(t.k0, c, 0, funid=0, abi=datum)
#assert o1["gas"] == o2["gas"], (o1, o2, datum)
assert o1["output"] == o2["output"], (o1, o2, datum)

View File

@@ -0,0 +1,45 @@
if msg.data[0] == 0:
new_id = contract.storage[-1]
# store [from, to, value, maxvalue, timeout] in contract storage
contract.storage[new_id] = msg.sender
contract.storage[new_id + 1] = msg.data[1]
contract.storage[new_id + 2] = 0
contract.storage[new_id + 3] = msg.value
contract.storage[new_id + 4] = 2^254
# increment next id
contract.storage[-1] = new_id + 10
# return id of this channel
return(new_id)
# Increase payment on channel: [1, id, value, v, r, s]
elif msg.data[0] == 1:
# Ecrecover native extension; will be a different address in testnet and live
ecrecover = 0x46a8d0b21b1336d83b06829f568d7450df36883f
# Message data parameters
id = msg.data[1] % 2^160
value = msg.data[2]
# Determine sender from signature
h = sha3([id, value], 2)
sender = call(ecrecover, [h, msg.data[3], msg.data[4], msg.data[5]], 4)
# Check sender matches and new value is greater than old
if sender == contract.storage[id]:
if value > contract.storage[id + 2] and value <= contract.storage[id + 3]:
# Update channel, increasing value and setting timeout
contract.storage[id + 2] = value
contract.storage[id + 4] = block.number + 1000
# Cash out channel: [2, id]
elif msg.data[0] == 2:
id = msg.data[1] % 2^160
# Check if timeout has run out
if block.number >= contract.storage[id + 3]:
# Send funds
send(contract.storage[id + 1], contract.storage[id + 2])
# Send refund
send(contract.storage[id], contract.storage[id + 3] - contract.storage[id + 2])
# Clear storage
contract.storage[id] = 0
contract.storage[id + 1] = 0
contract.storage[id + 2] = 0
contract.storage[id + 3] = 0
contract.storage[id + 4] = 0

View File

@@ -0,0 +1,19 @@
# An implementation of a contract for storing a key/value binding
init:
# Set owner
contract.storage[0] = msg.sender
code:
# Check ownership
if msg.sender == contract.storage[0]:
# Get: returns (found, val)
if msg.data[0] == 0:
s = sha3(msg.data[1])
return([contract.storage[s], contract.storage[s+1]], 2)
# Set: sets map[k] = v
elif msg.data[0] == 1:
s = sha3(msg.data[1])
contract.storage[s] = 1
contract.storage[s + 1] = msg.data[2]
# Suicide
elif msg.data[2] == 1:
suicide(0)

View File

@@ -0,0 +1,14 @@
init:
contract.storage[0] = msg.sender
code:
if msg.sender != contract.storage[0]:
stop
i = 0
while i < ~calldatasize():
to = ~calldataload(i)
value = ~calldataload(i+20) / 256^12
datasize = ~calldataload(i+32) / 256^30
data = alloc(datasize)
~calldatacopy(data, i+34, datasize)
~call(tx.gas - 25, to, value, data, datasize, 0, 0)
i += 34 + datasize

View File

@@ -0,0 +1,166 @@
# Exists in state:
# (i) last committed block
# (ii) chain of uncommitted blocks (linear only)
# (iii) transactions, each tx with an associated block number
#
# Uncommitted block =
# [ numtxs, numkvs, tx1 (N words), tx2 (N words) ..., [k1, v1], [k2, v2], [k3, v3] ... ]
#
# Block checking process
#
# Suppose last committed state is m
# Last uncommitted state is n
# Contested block is b
#
# 1. Temporarily apply all state transitions from
# m to b
# 2. Run code, get list of changes
# 3. Check is list of changes matches deltas
# * if yes, do nothing
# * if no, set last uncommitted state to pre-b
#
# Storage variables:
#
# Last committed block: 0
# Last uncommitted block: 1
# Contract holding code: 2
# Uncommitted map: 3
# Transaction length (parameter): 4
# Block b: 2^160 + b * 2^40:
# + 1: submission blknum
# + 2: submitter
# + 3: data in uncommitted block format above
# Last committed storage:
# sha3(k): index k
# Initialize: [0, c, txlength], set address of the code-holding contract and the transaction
# length
if not contract.storage[2]:
contract.storage[2] = msg.data[1]
contract.storage[4] = msg.data[2]
stop
# Sequentially commit all uncommitted blocks that are more than 1000 mainchain-blocks old
last_committed_block = contract.storage[0]
last_uncommitted_block = contract.storage[1]
lcb_storage_index = 2^160 + last_committed_block * 2^40
while contract.storage[lcb_storage_index + 1] < block.number - 1000 and last_committed_block < last_uncommitted_block:
kvpairs = contract.storage[lcb_storage_index]
i = 0
while i < kvpairs:
k = contract.storage[lcb_storage_index + 3 + i * 2]
v = contract.storage[lcb_storage_index + 4 + i * 2]
contract.storage[sha3(k)] = v
i += 1
last_committed_block += 1
lcb_storage_index += 2^40
contract.storage[0] = last_committed_block
# Propose block: [ 0, block number, data in block format above ... ]
if msg.data[0] == 0:
blknumber = msg.data[1]
# Block number must be correct
if blknumber != contract.storage[1]:
stop
# Deposit requirement
if msg.value < 10^19:
stop
# Store the proposal in storage as
# [ 0, main-chain block number, sender, block data...]
start_index = 2^160 + blknumber * 2^40
numkvs = (msg.datasize - 2) / 2
contract.storage[start_index + 1] = block.number
1ontract.storage[start_index + 2] = msg.sender
i = 0
while i < msg.datasize - 2:
contract.storage[start_index + 3 + i] = msg.data[2 + i]
i += 1
contract.storage[1] = blknumber + 1
# Challenge block: [ 1, b ]
elif msg.data[0] == 1:
blknumber = msg.data[1]
txwidth = contract.storage[4]
last_uncommitted_block = contract.storage[1]
last_committed_block = contract.storage[0]
# Cannot challenge nonexistent or committed blocks
if blknumber <= last_uncommitted_block or blknumber > last_committed_block:
stop
# Create a contract to serve as a map that maintains keys and values
# temporarily
tempstore = create('map.se')
contract.storage[3] = tempstore
# Unquestioningly apply the state transitions from the last committed block
# up to b
b = last_committed_block
cur_storage_index = 2^160 + last_committed_block * 2^40
while b < blknumber:
numtxs = contract.storage[cur_storage_index + 3]
numkvs = contract.storage[cur_storage_index + 4]
kv0index = cur_storage_index + 5 + numtxs * txwidth
i = 0
while i < numkvs:
k = contract.storage[kv0index + i * 2]
v = contract.storage[kx0index + i * 2 + 1]
call(tempstore, [1, k, v], 3)
i += 1
b += 1
cur_storage_index += 2^40
# Run the actual code, and see what state transitions it outputs
# The way that the code is expected to work is to:
#
# (1) take as input the list of transactions (the contract should
# use msg.datasize to determine how many txs there are, and it should
# be aware of the value of txwidth)
# (2) call this contract with [2, k] to read current state data
# (3) call this contract with [3, k, v] to write current state data
# (4) return as output a list of all state transitions that it made
# in the form [kvcount, k1, v1, k2, v2 ... ]
#
# The reason for separating (2) from (3) is that sometimes the state
# transition may end up changing a given key many times, and we don't
# need to inefficiently store that in storage
numkvs = contract.storage[cur_storage_index + 3]
numtxs = contract.storage[cur_storage_index + 4]
# Populate input array
inpwidth = numtxs * txwidth
inp = array(inpwidth)
i = 0
while i < inpwidth:
inp[i] = contract.storage[cur_storage_index + 5 + i]
i += 1
out = call(contract.storage[2], inp, inpwidth, numkvs * 2 + 1)
# Check that the number of state transitions is the same
if out[0] != kvcount:
send(msg.sender, 10^19)
contract.storage[0] = last_committed_block
stop
kv0index = cur_storage_index + 5 + numtxs * txwidth
i = 0
while i < kvcount:
# Check that each individual state transition matches
k = contract.storage[kv0index + i * 2 + 1]
v = contract.storage[kv0index + i * 2 + 2]
if k != out[i * 2 + 1] or v != out[i * 2 + 2]:
send(msg.sender, 10^19)
contract.storage[0] = last_committed_block
stop
i += 1
# Suicide tempstore
call(tempstore, 2)
# Read data [2, k]
elif msg.data[0] == 2:
tempstore = contract.storage[3]
o = call(tempstore, [0, msg.data[1]], 2, 2)
if o[0]:
return(o[1])
else:
return contract.storage[sha3(msg.data[1])]
# Write data [3, k, v]
elif msg.data[0] == 3:
tempstore = contract.storage[3]
call(tempstore, [1, msg.data[1], msg.data[2]], 3, 2)

View File

@@ -0,0 +1,31 @@
type f: [a, b, c, d, e]
macro f($a) + f($b):
f(add($a, $b))
macro f($a) - f($b):
f(sub($a, $b))
macro f($a) * f($b):
f(mul($a, $b) / 10000)
macro f($a) / f($b):
f(sdiv($a * 10000, $b))
macro f($a) % f($b):
f(smod($a, $b))
macro f($v) = f($w):
$v = $w
macro unfify(f($a)):
$a / 10000
macro fify($a):
f($a * 10000)
a = fify(5)
b = fify(2)
c = a / b
e = c + (a / b)
return(unfify(e))

View File

@@ -0,0 +1,116 @@
macro smin($a, $b):
with $1 = $a:
with $2 = $b:
if(slt($1, $2), $1, $2)
macro smax($a, $b):
with $1 = $a:
with $2 = $b:
if(slt($1, $2), $2, $1)
def omul(x, y):
o = expose(mklong(x) * mklong(y))
return(slice(o, 1), o[0]+1)
def oadd(x, y):
o = expose(mklong(x) + mklong(y))
return(slice(o, 1), o[0]+1)
def osub(x, y):
o = expose(mklong(x) - mklong(y))
return(slice(o, 1), o[0]+1)
def odiv(x, y):
o = expose(mklong(x) / mklong(y))
return(slice(o, 1), o[0]+1)
def comb(a:a, b:a, sign):
sz = smax(a[0], b[0])
msz = smin(a[0], b[0])
c = array(sz + 2)
c[0] = sz
i = 0
carry = 0
while i < msz:
m = a[i + 1] + sign * b[i + 1] + carry
c[i + 1] = mod(m + 2^127, 2^128) - 2^127
carry = (div(m + 2^127, 2^128) + 2^127) % 2^128 - 2^127
i += 1
u = if(a[0] > msz, a, b)
s = if(a[0] > msz, 1, sign)
while i < sz:
m = s * u[i + 1] + carry
c[i + 1] = mod(m + 2^127, 2^128) - 2^127
carry = (div(m + 2^127, 2^128) + 2^127) % 2^128 - 2^127
i += 1
if carry:
c[0] += 1
c[sz + 1] = carry
return(c, c[0]+1)
def mul(a:a, b:a):
c = array(a[0] + b[0] + 2)
c[0] = a[0] + b[0]
i = 0
while i < a[0]:
j = 0
carry = 0
while j < b[0]:
m = c[i + j + 1] + a[i + 1] * b[j + 1] + carry
c[i + j + 1] = mod(m + 2^127, 2^128) - 2^127
carry = (div(m + 2^127, 2^128) + 2^127) % 2^128 - 2^127
j += 1
if carry:
c[0] = a[0] + b[0] + 1
c[i + j + 1] += carry
i += 1
return(c, c[0]+1)
macro long($a) + long($b):
long(self.comb($a:$a[0]+1, $b:$b[0]+1, 1, outsz=$a[0]+$b[0]+2))
macro long($a) - long($b):
long(self.comb($a:$a[0]+1, $b:$b[0]+1, -1, outsz=$a[0]+$b[0]+2))
macro long($a) * long($b):
long(self.mul($a:$a[0]+1, $b:$b[0]+1, outsz=$a[0]+$b[0]+2))
macro long($a) / long($b):
long(self.div($a:$a[0]+1, $b:$b[0]+1, outsz=$a[0]+$b[0]+2))
macro mulexpand(long($a), $k, $m):
long:
with $c = array($a[0]+k+2):
$c[0] = $a[0]+$k
with i = 0:
while i < $a[0]:
v = $a[i+1] * $m + $c[i+$k+1]
$c[i+$k+1] = mod(v + 2^127, 2^128) - 2^127
$c[i+$k+2] = div(v + 2^127, 2^128)
i += 1
$c
def div(a:a, b:a):
asz = a[0]
bsz = b[0]
while b[bsz] == 0 and bsz > 0:
bsz -= 1
c = array(asz+2)
c[0] = asz+1
while 1:
while a[asz] == 0 and asz > 0:
asz -= 1
if asz < bsz:
return(c, c[0]+1)
sub = expose(mulexpand(long(b), asz - bsz, a[asz] / b[bsz]))
c[asz - bsz+1] = a[asz] / b[bsz]
a = expose(long(a) - long(sub))
a[asz-1] += 2^128 * a[asz]
a[asz] = 0
macro mklong($i):
long([2, mod($i + 2^127, 2^128) - 2^127, div($i + 2^127, 2^128)])
macro expose(long($i)):
$i

View File

@@ -0,0 +1,2 @@
def double(v):
return(v*2)

View File

@@ -0,0 +1,187 @@
# mutuala - subcurrency
# We want to issue a currency that reduces in value as you store it through negative interest.
# That negative interest would be stored in a commons account. It's like the p2p version of a
# capital tax
# the same things goes for transactions - you pay as you use the currency. However, the more
# you pay, the more you get to say about what the tax is used for
# each participant can propose a recipient for a payout to be made out of the commons account,
# others can vote on it by awarding it tax_credits.
# TODO should proposal have expiration timestamp?, after which the tax_credits are refunded
# TODO multiple proposals can take more credits that available in the Commons, how to handle this
# TODO how to handle lost accounts, after which no longer possible to get 2/3 majority
shared:
COMMONS = 42
ADMIN = 666
CAPITAL_TAX_PER_DAY = 7305 # 5% per year
PAYMENT_TAX = 20 # 5%
ACCOUNT_LIST_OFFSET = 2^160
ACCOUNT_MAP_OFFSET = 2^161
PROPOSAL_LIST_OFFSET = 2^162
PROPOSAL_MAP_OFFSET = 2^163
init:
contract.storage[ADMIN] = msg.sender
contract.storage[ACCOUNT_LIST_OFFSET - 1] = 1
contract.storage[ACCOUNT_LIST_OFFSET] = msg.sender
contract.storage[ACCOUNT_MAP_OFFSET + msg.sender] = 10^12
contract.storage[ACCOUNT_MAP_OFFSET + msg.sender + 1] = block.timestamp
# contract.storage[COMMONS] = balance commons
# contract.storage[ACCOUNT_LIST_OFFSET - 1] = number of accounts
# contract.storage[ACCOUNT_LIST_OFFSET + n] = account n
# contract.storage[PROPOSAL_LIST_OFFSET - 1] contains the number of proposals
# contract.storage[PROPOSAL_LIST_OFFSET + n] = proposal n
# per account:
# contract.storage[ACCOUNT_MAP_OFFSET + account] = balance
# contract.storage[ACCOUNT_MAP_OFFSET + account+1] = timestamp_last_transaction
# contract.storage[ACCOUNT_MAP_OFFSET + account+2] = tax_credits
# per proposal:
# contract.storage[PROPOSAL_MAP_OFFSET + proposal_id] = recipient
# contract.storage[PROPOSAL_MAP_OFFSET + proposal_id+1] = amount
# contract.storage[PROPOSAL_MAP_OFFSET + proposal_id+2] = total vote credits
code:
if msg.data[0] == "suicide" and msg.sender == contract.storage[ADMIN]:
suicide(msg.sender)
elif msg.data[0] == "balance":
addr = msg.data[1]
return(contract.storage[ACCOUNT_MAP_OFFSET + addr])
elif msg.data[0] == "pay":
from = msg.sender
fromvalue = contract.storage[ACCOUNT_MAP_OFFSET + from]
to = msg.data[1]
if to == 0 or to >= 2^160:
return([0, "invalid address"], 2)
value = msg.data[2]
tax = value / PAYMENT_TAX
if fromvalue >= value + tax:
contract.storage[ACCOUNT_MAP_OFFSET + from] = fromvalue - (value + tax)
contract.storage[ACCOUNT_MAP_OFFSET + to] += value
# tax
contract.storage[COMMONS] += tax
contract.storage[ACCOUNT_MAP_OFFSET + from + 2] += tax
# check timestamp field to see if target account exists
if contract.storage[ACCOUNT_MAP_OFFSET + to + 1] == 0:
# register new account
nr_accounts = contract.storage[ACCOUNT_LIST_OFFSET - 1]
contract.storage[ACCOUNT_LIST_OFFSET + nr_accounts] = to
contract.storage[ACCOUNT_LIST_OFFSET - 1] += 1
contract.storage[ACCOUNT_MAP_OFFSET + to + 1] = block.timestamp
return(1)
else:
return([0, "insufficient balance"], 2)
elif msg.data[0] == "hash":
proposal_id = sha3(msg.data[1])
return(proposal_id)
elif msg.data[0] == "propose":
from = msg.sender
# check if sender has an account and has tax credits
if contract.storage[ACCOUNT_MAP_OFFSET + from + 2] == 0:
return([0, "sender has no tax credits"], 2)
proposal_id = sha3(msg.data[1])
# check if proposal doesn't already exist
if contract.storage[PROPOSAL_MAP_OFFSET + proposal_id]:
return([0, "proposal already exists"])
to = msg.data[2]
# check if recipient is a valid address and has an account (with timestamp)
if to == 0 or to >= 2^160:
return([0, "invalid address"], 2)
if contract.storage[ACCOUNT_MAP_OFFSET + to + 1] == 0:
return([0, "invalid to account"], 2)
value = msg.data[3]
# check if there is enough money in the commons account
if value > contract.storage[COMMONS]:
return([0, "not enough credits in commons"], 2)
# record proposal in list
nr_proposals = contract.storage[PROPOSAL_LIST_OFFSET - 1]
contract.storage[PROPOSAL_LIST_OFFSET + nr_proposals] = proposal_id
contract.storage[PROPOSAL_LIST_OFFSET - 1] += 1
# record proposal in map
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id] = to
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 1] = value
return(proposal_id)
elif msg.data[0] == "vote":
from = msg.sender
proposal_id = sha3(msg.data[1])
value = msg.data[2]
# check if sender has an account and has tax credits
if value < contract.storage[ACCOUNT_MAP_OFFSET + from + 2]:
return([0, "sender doesn't have enough tax credits"], 2)
# check if proposal exist
if contract.storage[PROPOSAL_MAP_OFFSET + proposal_id] == 0:
return([0, "proposal doesn't exist"], 2)
# increase votes
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 2] += value
# withdraw tax credits
contract.storage[ACCOUNT_MAP_OFFSET + from + 2] -= value
# did we reach 2/3 threshold?
if contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 2] >= contract.storage[COMMONS] * 2 / 3:
# got majority
to = contract.storage[PROPOSAL_MAP_OFFSET + proposal_id]
amount = contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 1]
# adjust balances
contract.storage[ACCOUNT_MAP_OFFSET + to] += amount
contract.storage[COMMONS] -= amount
# reset proposal
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id] = 0
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 1] = 0
contract.storage[PROPOSAL_MAP_OFFSET + proposal_id + 2] = 0
return(1)
return(proposal_id)
elif msg.data[0] == "tick":
nr_accounts = contract.storage[ACCOUNT_LIST_OFFSET - 1]
account_idx = 0
tax_paid = 0
# process all accounts and see if they have to pay their daily capital tax
while account_idx < nr_accounts:
cur_account = contract.storage[ACCOUNT_LIST_OFFSET + account_idx]
last_timestamp = contract.storage[ACCOUNT_MAP_OFFSET + cur_account + 1]
time_diff = block.timestamp - last_timestamp
if time_diff >= 86400:
tax_days = time_diff / 86400
balance = contract.storage[ACCOUNT_MAP_OFFSET + cur_account]
tax = tax_days * (balance / CAPITAL_TAX_PER_DAY)
if tax > 0:
# charge capital tax, but give tax credits in return
contract.storage[ACCOUNT_MAP_OFFSET + cur_account] -= tax
contract.storage[ACCOUNT_MAP_OFFSET + cur_account + 1] += tax_days * 86400
contract.storage[ACCOUNT_MAP_OFFSET + cur_account + 2] += tax
contract.storage[COMMONS] += tax
tax_paid += 1
account_idx += 1
return(tax_paid) # how many accounts did we charge tax on
else:
return([0, "unknown command"], 2)

View File

@@ -0,0 +1,7 @@
def register(k, v):
if !self.storage[k]: # Is the key not yet taken?
# Then take it!
self.storage[k] = v
return(1)
else:
return(0) // Otherwise do nothing

View File

@@ -0,0 +1,43 @@
macro padd($x, psuc($y)):
psuc(padd($x, $y))
macro padd($x, z()):
$x
macro dec(psuc($x)):
dec($x) + 1
macro dec(z()):
0
macro pmul($x, z()):
z()
macro pmul($x, psuc($y)):
padd(pmul($x, $y), $x)
macro pexp($x, z()):
one()
macro pexp($x, psuc($y)):
pmul($x, pexp($x, $y))
macro fac(z()):
one()
macro fac(psuc($x)):
pmul(psuc($x), fac($x))
macro one():
psuc(z())
macro two():
psuc(psuc(z()))
macro three():
psuc(psuc(psuc(z())))
macro five():
padd(three(), two())
return([dec(pmul(three(), pmul(three(), three()))), dec(fac(five()))], 2)

View File

@@ -0,0 +1,4 @@
extern mul2: [double]
x = create("mul2.se")
return(x.double(5))

View File

@@ -0,0 +1,33 @@
def kall():
argcount = ~calldatasize() / 32
if argcount == 1:
return(~calldataload(1))
args = array(argcount)
~calldatacopy(args, 1, argcount * 32)
low = array(argcount)
lsz = 0
high = array(argcount)
hsz = 0
i = 1
while i < argcount:
if args[i] < args[0]:
low[lsz] = args[i]
lsz += 1
else:
high[hsz] = args[i]
hsz += 1
i += 1
low = self.kall(data=low, datasz=lsz, outsz=lsz)
high = self.kall(data=high, datasz=hsz, outsz=hsz)
o = array(argcount)
i = 0
while i < lsz:
o[i] = low[i]
i += 1
o[lsz] = args[0]
j = 0
while j < hsz:
o[lsz + 1 + j] = high[j]
j += 1
return(o, argcount)

View File

@@ -0,0 +1,46 @@
# Quicksort pairs
# eg. input of the form [ 30, 1, 90, 2, 70, 3, 50, 4]
# outputs [ 30, 1, 50, 4, 70, 3, 90, 2 ]
#
# Note: this can be used as a generalized sorting algorithm:
# map every object to [ key, ref ] where `ref` is the index
# in memory to all of the properties and `key` is the key to
# sort by
def kall():
argcount = ~calldatasize() / 64
if argcount == 1:
return([~calldataload(1), ~calldataload(33)], 2)
args = array(argcount * 2)
~calldatacopy(args, 1, argcount * 64)
low = array(argcount * 2)
lsz = 0
high = array(argcount * 2)
hsz = 0
i = 2
while i < argcount * 2:
if args[i] < args[0]:
low[lsz] = args[i]
low[lsz + 1] = args[i + 1]
lsz += 2
else:
high[hsz] = args[i]
high[hsz + 1] = args[i + 1]
hsz += 2
i = i + 2
low = self.kall(data=low, datasz=lsz, outsz=lsz)
high = self.kall(data=high, datasz=hsz, outsz=hsz)
o = array(argcount * 2)
i = 0
while i < lsz:
o[i] = low[i]
i += 1
o[lsz] = args[0]
o[lsz + 1] = args[1]
j = 0
while j < hsz:
o[lsz + 2 + j] = high[j]
j += 1
return(o, argcount * 2)

View File

@@ -0,0 +1,94 @@
# SchellingCoin implementation
#
# Epoch length: 100 blocks
# Target savings depletion rate: 0.1% per epoch
data epoch
data hashes_submitted
data output
data quicksort_pairs
data accounts[2^160]
data submissions[2^80](hash, deposit, address, value)
extern any: [call]
def init():
self.epoch = block.number / 100
self.quicksort_pairs = create('quicksort_pairs.se')
def any():
if block.number / 100 > epoch:
# Sort all values submitted
N = self.hashes_submitted
o = array(N * 2)
i = 0
j = 0
while i < N:
v = self.submissions[i].value
if v:
o[j] = v
o[j + 1] = i
j += 2
i += 1
values = self.quicksort_pairs.call(data=o, datasz=j, outsz=j)
# Calculate total deposit, refund non-submitters and
# cleanup
deposits = array(j / 2)
addresses = array(j / 2)
i = 0
total_deposit = 0
while i < j / 2:
base_index = HASHES + values[i * 2 + 1] * 3
deposits[i] = self.submissions[i].deposit
addresses[i] = self.submissions[i].address
if self.submissions[values[i * 2 + 1]].value:
total_deposit += deposits[i]
else:
send(addresses[i], deposits[i] * 999 / 1000)
i += 1
inverse_profit_ratio = total_deposit / (contract.balance / 1000) + 1
# Reward everyone
i = 0
running_deposit_sum = 0
halfway_passed = 0
while i < j / 2:
new_deposit_sum = running_deposit_sum + deposits[i]
if new_deposit_sum > total_deposit / 4 and running_deposit_sum < total_deposit * 3 / 4:
send(addresses[i], deposits[i] + deposits[i] / inverse_profit_ratio * 2)
else:
send(addresses[i], deposits[i] - deposits[i] / inverse_profit_ratio)
if not halfway_passed and new_deposit_sum > total_deposit / 2:
self.output = self.submissions[i].value
halfway_passed = 1
self.submissions[i].value = 0
running_deposit_sum = new_deposit_sum
i += 1
self.epoch = block.number / 100
self.hashes_submitted = 0
def submit_hash(h):
if block.number % 100 < 50:
cur = self.hashes_submitted
pos = HASHES + cur * 3
self.submissions[cur].hash = h
self.submissions[cur].deposit = msg.value
self.submissions[cur].address = msg.sender
self.hashes_submitted = cur + 1
return(cur)
def submit_value(index, v):
if sha3([msg.sender, v], 2) == self.submissions[index].hash:
self.submissions[index].value = v
return(1)
def request_balance():
return(contract.balance)
def request_output():
return(self.output)

View File

@@ -0,0 +1,171 @@
# Hedged zero-supply dollar implementation
# Uses SchellingCoin as price-determining backend
#
# Stored variables:
#
# 0: Schelling coin contract
# 1: Last epoch
# 2: Genesis block of contract
# 3: USD exposure
# 4: ETH exposure
# 5: Cached price
# 6: Last interest rate
# 2^160 + k: interest rate accumulator at k epochs
# 2^161 + ADDR * 3: eth-balance of a particular address
# 2^161 + ADDR * 3 + 1: usd-balance of a particular address
# 2^161 + ADDR * 3 + 1: last accessed epoch of a particular address
#
# Transaction types:
#
# [1, to, val]: send ETH
# [2, to, val]: send USD
# [3, wei_amount]: convert ETH to USD
# [4, usd_amount]: converts USD to ETH
# [5]: deposit
# [6, amount]: withdraw
# [7]: my balance query
# [7, acct]: balance query for any acct
# [8]: global state query
# [9]: liquidation test any account
#
# The purpose of the contract is to serve as a sort of cryptographic
# bank account where users can store both ETH and USD. ETH must be
# stored in zero or positive quantities, but USD balances can be
# positive or negative. If the USD balance is negative, the invariant
# usdbal * 10 >= ethbal * 9 must be satisfied; if any account falls
# below this value, then that account's balances are zeroed. Note
# that there is a 2% bounty to ping the app if an account does go
# below zero; one weakness is that if no one does ping then it is
# quite possible for accounts to go negative-net-worth, then zero
# themselves out, draining the reserves of the "bank" and potentially
# bankrupting it. A 0.1% fee on ETH <-> USD trade is charged to
# minimize this risk. Additionally, the bank itself will inevitably
# end up with positive or negative USD exposure; to mitigate this,
# it automatically updates interest rates on USD to keep exposure
# near zero.
data schelling_coin
data last_epoch
data starting_block
data usd_exposure
data eth_exposure
data price
data last_interest_rate
data interest_rate_accum[2^50]
data accounts[2^160](eth, usd, last_epoch)
extern sc: [submit_hash, submit_value, request_balance, request_output]
def init():
self.schelling_coin = create('schellingcoin.se')
self.price = self.schelling_coin.request_output()
self.interest_rate_accum[0] = 10^18
self.starting_block = block.number
def any():
sender = msg.sender
epoch = (block.number - self.starting_block) / 100
last_epoch = self.last_epoch
usdprice = self.price
# Update contract epochs
if epoch > last_epoch:
delta = epoch - last_epoch
last_interest_rate = self.last_interest_rate
usd_exposure - self.usd_exposure
last_accum = self.interest_rate_accum[last_epoch]
if usd_exposure < 0:
self.last_interest_rate = last_interest_rate - 10000 * delta
elif usd_exposure > 0:
self.last_interest_rate = last_interest_rate + 10000 * delta
self.interest_rate_accum[epoch] = last_accum + last_accum * last_interest_rate * delta / 10^9
# Proceeds go to support the SchellingCoin feeding it price data, ultimately providing the depositors
# of the SchellingCoin an interest rate
bal = max(self.balance - self.eth_exposure, 0) / 10000
usdprice = self.schelling_coin.request_output()
self.price = usdprice
self.last_epoch = epoch
ethbal = self.accounts[msg.sender].eth
usdbal = self.accounts[msg.sender].usd
# Apply interest rates to sender and liquidation-test self
if msg.sender != self:
self.ping(self)
def send_eth(to, value):
if value > 0 and value <= ethbal and usdbal * usdprice * 2 + (ethbal - value) >= 0:
self.accounts[msg.sender].eth = ethbal - value
self.ping(to)
self.accounts[to].eth += value
return(1)
def send_usd(to, value):
if value > 0 and value <= usdbal and (usdbal - value) * usdprice * 2 + ethbal >= 0:
self.accounts[msg.sender].usd = usdbal - value
self.ping(to)
self.accounts[to].usd += value
return(1)
def convert_to_eth(usdvalue):
ethplus = usdvalue * usdprice * 999 / 1000
if usdvalue > 0 and (usdbal - usdvalue) * usdprice * 2 + (ethbal + ethplus) >= 0:
self.accounts[msg.sender].eth = ethbal + ethplus
self.accounts[msg.sender].usd = usdbal - usdvalue
self.eth_exposure += ethplus
self.usd_exposure -= usdvalue
return([ethbal + ethplus, usdbal - usdvalue], 2)
def convert_to_usd(ethvalue):
usdplus = ethvalue / usdprice * 999 / 1000
if ethvalue > 0 and (usdbal + usdplus) * usdprice * 2 + (ethbal - ethvalue) >= 0:
self.accounts[msg.sender].eth = ethbal - ethvalue
self.accounts[msg.sender].usd = usdbal + usdplus
self.eth_exposure -= ethvalue
self.usd_exposure += usdplus
return([ethbal - ethvalue, usdbal + usdplus], 2)
def deposit():
self.accounts[msg.sender].eth = ethbal + msg.value
self.eth_exposure += msg.value
return(ethbal + msg.value)
def withdraw(value):
if value > 0 and value <= ethbal and usdbal * usdprice * 2 + (ethbal - value) >= 0:
self.accounts[msg.sender].eth -= value
self.eth_exposure -= value
return(ethbal - value)
def balance(acct):
self.ping(acct)
return([self.accounts[acct].eth, self.accounts[acct].usd], 2)
def global_state_query(acct):
interest = self.last_interest_rate
usd_exposure = self.usd_exposure
eth_exposure = self.eth_exposure
eth_balance = self.balance
return([epoch, usdprice, interest, usd_exposure, eth_exposure, eth_balance], 6)
def ping(acct):
account_last_epoch = self.accounts[acct].last_epoch
if account_last_epoch != epoch:
cur_usd_balance = self.accounts[acct].usd
new_usd_balance = cur_usd_balance * self.interest_rate_accum[epoch] / self.interest_rate_accum[account_last_epoch]
self.accounts[acct].usd = new_usd_balance
self.accounts[acct].last_epoch = epoch
self.usd_exposure += new_usd_balance - cur_usd_balance
ethbal = self.accounts[acct].eth
if new_usd_balance * usdval * 10 + ethbal * 9 < 0:
self.accounts[acct].eth = 0
self.accounts[acct].usd = 0
self.accounts[msg.sender].eth += ethbal / 50
self.eth_exposure += -ethbal + ethbal / 50
self.usd_exposure += new_usd_balance
return(1)
return(0)

View File

@@ -0,0 +1 @@
return(sha3([msg.sender, msg.data[0]], 2))

View File

@@ -0,0 +1,3 @@
def register(k, v):
if !self.storage[k]:
self.storage[k] = v

View File

@@ -0,0 +1,11 @@
def init():
self.storage[msg.sender] = 1000000
def balance_query(k):
return(self.storage[addr])
def send(to, value):
fromvalue = self.storage[msg.sender]
if fromvalue >= value:
self.storage[from] = fromvalue - value
self.storage[to] += value

View File

@@ -0,0 +1,35 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include "funcs.h"
#include "bignum.h"
#include "util.h"
#include "parser.h"
#include "lllparser.h"
#include "compiler.h"
#include "rewriter.h"
#include "tokenize.h"
Node compileToLLL(std::string input) {
return rewrite(parseSerpent(input));
}
Node compileChunkToLLL(std::string input) {
return rewriteChunk(parseSerpent(input));
}
std::string compile(std::string input) {
return compileLLL(compileToLLL(input));
}
std::vector<Node> prettyCompile(std::string input) {
return prettyCompileLLL(compileToLLL(input));
}
std::string compileChunk(std::string input) {
return compileLLL(compileChunkToLLL(input));
}
std::vector<Node> prettyCompileChunk(std::string input) {
return prettyCompileLLL(compileChunkToLLL(input));
}

View File

@@ -0,0 +1,35 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include "bignum.h"
#include "util.h"
#include "parser.h"
#include "lllparser.h"
#include "compiler.h"
#include "rewriter.h"
#include "tokenize.h"
// Function listing:
//
// parseSerpent (serpent -> AST) std::string -> Node
// parseLLL (LLL -> AST) std::string -> Node
// rewrite (apply rewrite rules) Node -> Node
// compileToLLL (serpent -> LLL) std::string -> Node
// compileLLL (LLL -> EVMhex) Node -> std::string
// prettyCompileLLL (LLL -> EVMasm) Node -> std::vector<Node>
// prettyCompile (serpent -> EVMasm) std::string -> std::vector>Node>
// compile (serpent -> EVMhex) std::string -> std::string
// get_file_contents (filename -> file) std::string -> std::string
// exists (does file exist?) std::string -> bool
Node compileToLLL(std::string input);
Node compileChunkToLLL(std::string input);
std::string compile(std::string input);
std::vector<Node> prettyCompile(std::string input);
std::string compileChunk(std::string input);
std::vector<Node> prettyCompileChunk(std::string input);

View File

@@ -0,0 +1,203 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "bignum.h"
#include "optimize.h"
#include "rewriteutils.h"
#include "preprocess.h"
#include "functions.h"
std::string getSignature(std::vector<Node> args) {
std::string o;
for (unsigned i = 0; i < args.size(); i++) {
if (args[i].val == ":" && args[i].args[1].val == "s")
o += "s";
else if (args[i].val == ":" && args[i].args[1].val == "a")
o += "a";
else
o += "i";
}
return o;
}
// Convert a list of arguments into a node containing a
// < datastart, datasz > pair
Node packArguments(std::vector<Node> args, std::string sig,
int funId, Metadata m) {
// Plain old 32 byte arguments
std::vector<Node> nargs;
// Variable-sized arguments
std::vector<Node> vargs;
// Variable sizes
std::vector<Node> sizes;
// Is a variable an array?
std::vector<bool> isArray;
// Fill up above three argument lists
int argCount = 0;
for (unsigned i = 0; i < args.size(); i++) {
Metadata m = args[i].metadata;
if (args[i].val == "=") {
// do nothing
}
else {
// Determine the correct argument type
char argType;
if (sig.size() > 0) {
if (argCount >= (signed)sig.size())
err("Too many args", m);
argType = sig[argCount];
}
else argType = 'i';
// Integer (also usable for short strings)
if (argType == 'i') {
if (args[i].val == ":")
err("Function asks for int, provided string or array", m);
nargs.push_back(args[i]);
}
// Long string
else if (argType == 's') {
if (args[i].val != ":")
err("Must specify string length", m);
vargs.push_back(args[i].args[0]);
sizes.push_back(args[i].args[1]);
isArray.push_back(false);
}
// Array
else if (argType == 'a') {
if (args[i].val != ":")
err("Must specify array length", m);
vargs.push_back(args[i].args[0]);
sizes.push_back(args[i].args[1]);
isArray.push_back(true);
}
else err("Invalid arg type in signature", m);
argCount++;
}
}
int static_arg_size = 1 + (vargs.size() + nargs.size()) * 32;
// Start off by saving the size variables and calculating the total
msn kwargs;
kwargs["funid"] = tkn(utd(funId), m);
std::string pattern =
"(with _sztot "+utd(static_arg_size)+" "
" (with _sizes (alloc "+utd(sizes.size() * 32)+") "
" (seq ";
for (unsigned i = 0; i < sizes.size(); i++) {
std::string sizeIncrement =
isArray[i] ? "(mul 32 _x)" : "_x";
pattern +=
"(with _x $sz"+utd(i)+"(seq "
" (mstore (add _sizes "+utd(i * 32)+") _x) "
" (set _sztot (add _sztot "+sizeIncrement+" )))) ";
kwargs["sz"+utd(i)] = sizes[i];
}
// Allocate memory, and set first data byte
pattern +=
"(with _datastart (alloc (add _sztot 32)) (seq "
" (mstore8 _datastart $funid) ";
// Copy over size variables
for (unsigned i = 0; i < sizes.size(); i++) {
int v = 1 + i * 32;
pattern +=
" (mstore "
" (add _datastart "+utd(v)+") "
" (mload (add _sizes "+utd(v-1)+"))) ";
}
// Store normal arguments
for (unsigned i = 0; i < nargs.size(); i++) {
int v = 1 + (i + sizes.size()) * 32;
pattern +=
" (mstore (add _datastart "+utd(v)+") $"+utd(i)+") ";
kwargs[utd(i)] = nargs[i];
}
// Loop through variable-sized arguments, store them
pattern +=
" (with _pos (add _datastart "+utd(static_arg_size)+") (seq";
for (unsigned i = 0; i < vargs.size(); i++) {
std::string copySize =
isArray[i] ? "(mul 32 (mload (add _sizes "+utd(i * 32)+")))"
: "(mload (add _sizes "+utd(i * 32)+"))";
pattern +=
" (unsafe_mcopy _pos $vl"+utd(i)+" "+copySize+") "
" (set _pos (add _pos "+copySize+")) ";
kwargs["vl"+utd(i)] = vargs[i];
}
// Return a 2-item array containing the start and size
pattern += " (array_lit _datastart _sztot))))))))";
std::string prefix = "_temp_"+mkUniqueToken();
// Fill in pattern, return triple
return subst(parseLLL(pattern), kwargs, prefix, m);
}
// Create a node for argument unpacking
Node unpackArguments(std::vector<Node> vars, Metadata m) {
std::vector<std::string> varNames;
std::vector<std::string> longVarNames;
std::vector<bool> longVarIsArray;
// Fill in variable and long variable names, as well as which
// long variables are arrays and which are strings
for (unsigned i = 0; i < vars.size(); i++) {
if (vars[i].val == ":") {
if (vars[i].args.size() != 2)
err("Malformed def!", m);
longVarNames.push_back(vars[i].args[0].val);
std::string tag = vars[i].args[1].val;
if (tag == "s")
longVarIsArray.push_back(false);
else if (tag == "a")
longVarIsArray.push_back(true);
else
err("Function value can only be string or array", m);
}
else {
varNames.push_back(vars[i].val);
}
}
std::vector<Node> sub;
if (!varNames.size() && !longVarNames.size()) {
// do nothing if we have no arguments
}
else {
std::vector<Node> varNodes;
for (unsigned i = 0; i < longVarNames.size(); i++)
varNodes.push_back(token(longVarNames[i], m));
for (unsigned i = 0; i < varNames.size(); i++)
varNodes.push_back(token(varNames[i], m));
// Copy over variable lengths and short variables
for (unsigned i = 0; i < varNodes.size(); i++) {
int pos = 1 + i * 32;
std::string prefix = (i < longVarNames.size()) ? "_len_" : "";
sub.push_back(asn("untyped", asn("set",
token(prefix+varNodes[i].val, m),
asn("calldataload", tkn(utd(pos), m), m),
m)));
}
// Copy over long variables
if (longVarNames.size() > 0) {
std::vector<Node> sub2;
int pos = varNodes.size() * 32 + 1;
Node tot = tkn("_tot", m);
for (unsigned i = 0; i < longVarNames.size(); i++) {
Node var = tkn(longVarNames[i], m);
Node varlen = longVarIsArray[i]
? asn("mul", tkn("32", m), tkn("_len_"+longVarNames[i], m))
: tkn("_len_"+longVarNames[i], m);
sub2.push_back(asn("untyped",
asn("set", var, asn("alloc", varlen))));
sub2.push_back(asn("calldatacopy", var, tot, varlen));
sub2.push_back(asn("set", tot, asn("add", tot, varlen)));
}
std::string prefix = "_temp_"+mkUniqueToken();
sub.push_back(subst(
astnode("with", tot, tkn(utd(pos), m), asn("seq", sub2)),
msn(),
prefix,
m));
}
}
return asn("seq", sub, m);
}

View File

@@ -0,0 +1,39 @@
#ifndef ETHSERP_FUNCTIONS
#define ETHSERP_FUNCTIONS
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "bignum.h"
#include "optimize.h"
#include "rewriteutils.h"
#include "preprocess.h"
class argPack {
public:
argPack(Node a, Node b, Node c) {
pre = a;
datastart = b;
datasz = c;
}
Node pre;
Node datastart;
Node datasz;
};
// Get a signature from a function
std::string getSignature(std::vector<Node> args);
// Convert a list of arguments into a <pre, mstart, msize> node
// triple, given the signature of a function
Node packArguments(std::vector<Node> args, std::string sig,
int funId, Metadata m);
// Create a node for argument unpacking
Node unpackArguments(std::vector<Node> vars, Metadata m);
#endif

View File

@@ -0,0 +1,70 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "tokenize.h"
struct _parseOutput {
Node node;
int newpos;
};
// Helper, returns subtree and position of start of next node
_parseOutput _parse(std::vector<Node> inp, int pos) {
Metadata met = inp[pos].metadata;
_parseOutput o;
// Bracket: keep grabbing tokens until we get to the
// corresponding closing bracket
if (inp[pos].val == "(" || inp[pos].val == "[") {
std::string fun, rbrack;
std::vector<Node> args;
pos += 1;
if (inp[pos].val == "[") {
fun = "access";
rbrack = "]";
}
else rbrack = ")";
// First argument is the function
while (inp[pos].val != ")") {
_parseOutput po = _parse(inp, pos);
if (fun.length() == 0 && po.node.type == 1) {
std::cerr << "Error: first arg must be function\n";
fun = po.node.val;
}
else if (fun.length() == 0) {
fun = po.node.val;
}
else {
args.push_back(po.node);
}
pos = po.newpos;
}
o.newpos = pos + 1;
o.node = astnode(fun, args, met);
}
// Normal token, return it and advance to next token
else {
o.newpos = pos + 1;
o.node = token(inp[pos].val, met);
}
return o;
}
// stream of tokens -> lisp parse tree
Node parseLLLTokenStream(std::vector<Node> inp) {
_parseOutput o = _parse(inp, 0);
return o.node;
}
// Parses LLL
Node parseLLL(std::string s, bool allowFileRead) {
std::string input = s;
std::string file = "main";
if (exists(s) && allowFileRead) {
file = s;
input = get_file_contents(s);
}
return parseLLLTokenStream(tokenize(s, Metadata(file, 0, 0), true));
}

View File

@@ -0,0 +1,13 @@
#ifndef ETHSERP_LLLPARSER
#define ETHSERP_LLLPARSER
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// LLL text -> parse tree
Node parseLLL(std::string s, bool allowFileRead=false);
#endif

View File

@@ -0,0 +1,154 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "opcodes.h"
#include "util.h"
#include "bignum.h"
Mapping mapping[] = {
Mapping("STOP", 0x00, 0, 0),
Mapping("ADD", 0x01, 2, 1),
Mapping("MUL", 0x02, 2, 1),
Mapping("SUB", 0x03, 2, 1),
Mapping("DIV", 0x04, 2, 1),
Mapping("SDIV", 0x05, 2, 1),
Mapping("MOD", 0x06, 2, 1),
Mapping("SMOD", 0x07, 2, 1),
Mapping("ADDMOD", 0x08, 3, 1),
Mapping("MULMOD", 0x09, 3, 1),
Mapping("EXP", 0x0a, 2, 1),
Mapping("SIGNEXTEND", 0x0b, 2, 1),
Mapping("LT", 0x10, 2, 1),
Mapping("GT", 0x11, 2, 1),
Mapping("SLT", 0x12, 2, 1),
Mapping("SGT", 0x13, 2, 1),
Mapping("EQ", 0x14, 2, 1),
Mapping("ISZERO", 0x15, 1, 1),
Mapping("AND", 0x16, 2, 1),
Mapping("OR", 0x17, 2, 1),
Mapping("XOR", 0x18, 2, 1),
Mapping("NOT", 0x19, 1, 1),
Mapping("BYTE", 0x1a, 2, 1),
Mapping("SHA3", 0x20, 2, 1),
Mapping("ADDRESS", 0x30, 0, 1),
Mapping("BALANCE", 0x31, 1, 1),
Mapping("ORIGIN", 0x32, 0, 1),
Mapping("CALLER", 0x33, 0, 1),
Mapping("CALLVALUE", 0x34, 0, 1),
Mapping("CALLDATALOAD", 0x35, 1, 1),
Mapping("CALLDATASIZE", 0x36, 0, 1),
Mapping("CALLDATACOPY", 0x37, 3, 0),
Mapping("CODESIZE", 0x38, 0, 1),
Mapping("CODECOPY", 0x39, 3, 0),
Mapping("GASPRICE", 0x3a, 0, 1),
Mapping("EXTCODESIZE", 0x3b, 1, 1),
Mapping("EXTCODECOPY", 0x3c, 4, 0),
Mapping("PREVHASH", 0x40, 0, 1),
Mapping("COINBASE", 0x41, 0, 1),
Mapping("TIMESTAMP", 0x42, 0, 1),
Mapping("NUMBER", 0x43, 0, 1),
Mapping("DIFFICULTY", 0x44, 0, 1),
Mapping("GASLIMIT", 0x45, 0, 1),
Mapping("POP", 0x50, 1, 0),
Mapping("MLOAD", 0x51, 1, 1),
Mapping("MSTORE", 0x52, 2, 0),
Mapping("MSTORE8", 0x53, 2, 0),
Mapping("SLOAD", 0x54, 1, 1),
Mapping("SSTORE", 0x55, 2, 0),
Mapping("JUMP", 0x56, 1, 0),
Mapping("JUMPI", 0x57, 2, 0),
Mapping("PC", 0x58, 0, 1),
Mapping("MSIZE", 0x59, 0, 1),
Mapping("GAS", 0x5a, 0, 1),
Mapping("JUMPDEST", 0x5b, 0, 0),
Mapping("LOG0", 0xa0, 2, 0),
Mapping("LOG1", 0xa1, 3, 0),
Mapping("LOG2", 0xa2, 4, 0),
Mapping("LOG3", 0xa3, 5, 0),
Mapping("LOG4", 0xa4, 6, 0),
Mapping("CREATE", 0xf0, 3, 1),
Mapping("CALL", 0xf1, 7, 1),
Mapping("CALLCODE", 0xf2, 7, 1),
Mapping("RETURN", 0xf3, 2, 0),
Mapping("SUICIDE", 0xff, 1, 0),
Mapping("---END---", 0x00, 0, 0),
};
std::map<std::string, std::vector<int> > opcodes;
std::map<int, std::string> reverseOpcodes;
// Fetches everything EXCEPT PUSH1..32
std::pair<std::string, std::vector<int> > _opdata(std::string ops, int opi) {
if (!opcodes.size()) {
int i = 0;
while (mapping[i].op != "---END---") {
Mapping mi = mapping[i];
opcodes[mi.op] = triple(mi.opcode, mi.in, mi.out);
i++;
}
for (i = 1; i <= 16; i++) {
opcodes["DUP"+unsignedToDecimal(i)] = triple(0x7f + i, i, i+1);
opcodes["SWAP"+unsignedToDecimal(i)] = triple(0x8f + i, i+1, i+1);
}
for (std::map<std::string, std::vector<int> >::iterator it=opcodes.begin();
it != opcodes.end();
it++) {
reverseOpcodes[(*it).second[0]] = (*it).first;
}
}
ops = upperCase(ops);
std::string op;
std::vector<int> opdata;
op = reverseOpcodes.count(opi) ? reverseOpcodes[opi] : "";
opdata = opcodes.count(ops) ? opcodes[ops] : triple(-1, -1, -1);
return std::pair<std::string, std::vector<int> >(op, opdata);
}
int opcode(std::string op) {
return _opdata(op, -1).second[0];
}
int opinputs(std::string op) {
return _opdata(op, -1).second[1];
}
int opoutputs(std::string op) {
return _opdata(op, -1).second[2];
}
std::string op(int opcode) {
return _opdata("", opcode).first;
}
std::string lllSpecials[][3] = {
{ "ref", "1", "1" },
{ "get", "1", "1" },
{ "set", "2", "2" },
{ "with", "3", "3" },
{ "comment", "0", "2147483647" },
{ "ops", "0", "2147483647" },
{ "lll", "2", "2" },
{ "seq", "0", "2147483647" },
{ "if", "3", "3" },
{ "unless", "2", "2" },
{ "until", "2", "2" },
{ "alloc", "1", "1" },
{ "---END---", "0", "0" },
};
std::map<std::string, std::pair<int, int> > lllMap;
// Is a function name one of the valid functions above?
bool isValidLLLFunc(std::string f, int argc) {
if (lllMap.size() == 0) {
for (int i = 0; ; i++) {
if (lllSpecials[i][0] == "---END---") break;
lllMap[lllSpecials[i][0]] = std::pair<int, int>(
dtu(lllSpecials[i][1]), dtu(lllSpecials[i][2]));
}
}
return lllMap.count(f)
&& argc >= lllMap[f].first
&& argc <= lllMap[f].second;
}

View File

@@ -0,0 +1,45 @@
#ifndef ETHSERP_OPCODES
#define ETHSERP_OPCODES
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
class Mapping {
public:
Mapping(std::string Op, int Opcode, int In, int Out) {
op = Op;
opcode = Opcode;
in = In;
out = Out;
}
std::string op;
int opcode;
int in;
int out;
};
extern Mapping mapping[];
extern std::map<std::string, std::vector<int> > opcodes;
extern std::map<int, std::string> reverseOpcodes;
std::pair<std::string, std::vector<int> > _opdata(std::string ops, int opi);
int opcode(std::string op);
int opinputs(std::string op);
int opoutputs(std::string op);
std::string op(int opcode);
extern std::string lllSpecials[][3];
extern std::map<std::string, std::pair<int, int> > lllMap;
bool isValidLLLFunc(std::string f, int argc);
#endif

View File

@@ -0,0 +1,98 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "bignum.h"
// Compile-time arithmetic calculations
Node optimize(Node inp) {
if (inp.type == TOKEN) {
Node o = tryNumberize(inp);
if (decimalGt(o.val, tt256, true))
err("Value too large (exceeds 32 bytes or 2^256)", inp.metadata);
return o;
}
for (unsigned i = 0; i < inp.args.size(); i++) {
inp.args[i] = optimize(inp.args[i]);
}
// Arithmetic-specific transform
if (inp.val == "+") inp.val = "add";
if (inp.val == "*") inp.val = "mul";
if (inp.val == "-") inp.val = "sub";
if (inp.val == "/") inp.val = "sdiv";
if (inp.val == "^") inp.val = "exp";
if (inp.val == "**") inp.val = "exp";
if (inp.val == "%") inp.val = "smod";
// Degenerate cases for add and mul
if (inp.args.size() == 2) {
if (inp.val == "add" && inp.args[0].type == TOKEN &&
inp.args[0].val == "0") {
Node x = inp.args[1];
inp = x;
}
if (inp.val == "add" && inp.args[1].type == TOKEN &&
inp.args[1].val == "0") {
Node x = inp.args[0];
inp = x;
}
if (inp.val == "mul" && inp.args[0].type == TOKEN &&
inp.args[0].val == "1") {
Node x = inp.args[1];
inp = x;
}
if (inp.val == "mul" && inp.args[1].type == TOKEN &&
inp.args[1].val == "1") {
Node x = inp.args[0];
inp = x;
}
}
// Arithmetic computation
if (inp.args.size() == 2
&& inp.args[0].type == TOKEN
&& inp.args[1].type == TOKEN) {
std::string o;
if (inp.val == "add") {
o = decimalMod(decimalAdd(inp.args[0].val, inp.args[1].val), tt256);
}
else if (inp.val == "sub") {
if (decimalGt(inp.args[0].val, inp.args[1].val, true))
o = decimalSub(inp.args[0].val, inp.args[1].val);
}
else if (inp.val == "mul") {
o = decimalMod(decimalMul(inp.args[0].val, inp.args[1].val), tt256);
}
else if (inp.val == "div" && inp.args[1].val != "0") {
o = decimalDiv(inp.args[0].val, inp.args[1].val);
}
else if (inp.val == "sdiv" && inp.args[1].val != "0"
&& decimalGt(tt255, inp.args[0].val)
&& decimalGt(tt255, inp.args[1].val)) {
o = decimalDiv(inp.args[0].val, inp.args[1].val);
}
else if (inp.val == "mod" && inp.args[1].val != "0") {
o = decimalMod(inp.args[0].val, inp.args[1].val);
}
else if (inp.val == "smod" && inp.args[1].val != "0"
&& decimalGt(tt255, inp.args[0].val)
&& decimalGt(tt255, inp.args[1].val)) {
o = decimalMod(inp.args[0].val, inp.args[1].val);
}
else if (inp.val == "exp") {
o = decimalModExp(inp.args[0].val, inp.args[1].val, tt256);
}
if (o.length()) return token(o, inp.metadata);
}
return inp;
}
// Is a node degenerate (ie. trivial to calculate) ?
bool isDegenerate(Node n) {
return optimize(n).type == TOKEN;
}
// Is a node purely arithmetic?
bool isPureArithmetic(Node n) {
return isNumberLike(optimize(n));
}

View File

@@ -0,0 +1,19 @@
#ifndef ETHSERP_OPTIMIZER
#define ETHSERP_OPTIMIZER
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// Compile-time arithmetic calculations
Node optimize(Node inp);
// Is a node degenerate (ie. trivial to calculate) ?
bool isDegenerate(Node n);
// Is a node purely arithmetic?
bool isPureArithmetic(Node n);
#endif

View File

@@ -0,0 +1,430 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "parser.h"
#include "tokenize.h"
// Extended BEDMAS precedence order
int precedence(Node tok) {
std::string v = tok.val;
if (v == ".") return -1;
else if (v == "!" || v == "not") return 1;
else if (v=="^" || v == "**") return 2;
else if (v=="*" || v=="/" || v=="%") return 3;
else if (v=="+" || v=="-") return 4;
else if (v=="<" || v==">" || v=="<=" || v==">=") return 5;
else if (v=="&" || v=="|" || v=="xor" || v=="==" || v == "!=") return 6;
else if (v=="&&" || v=="and") return 7;
else if (v=="||" || v=="or") return 8;
else if (v=="=") return 10;
else if (v=="+=" || v=="-=" || v=="*=" || v=="/=" || v=="%=") return 10;
else if (v==":" || v == "::") return 11;
else return 0;
}
// Token classification for shunting-yard purposes
int toktype(Node tok) {
if (tok.type == ASTNODE) return COMPOUND;
std::string v = tok.val;
if (v == "(" || v == "[" || v == "{") return LPAREN;
else if (v == ")" || v == "]" || v == "}") return RPAREN;
else if (v == ",") return COMMA;
else if (v == "!" || v == "~" || v == "not") return UNARY_OP;
else if (precedence(tok) > 0) return BINARY_OP;
else if (precedence(tok) < 0) return TOKEN_SPLITTER;
if (tok.val[0] != '"' && tok.val[0] != '\'') {
for (unsigned i = 0; i < tok.val.length(); i++) {
if (chartype(tok.val[i]) == SYMB) {
err("Invalid symbol: "+tok.val, tok.metadata);
}
}
}
return ALPHANUM;
}
// Converts to reverse polish notation
std::vector<Node> shuntingYard(std::vector<Node> tokens) {
std::vector<Node> iq;
for (int i = tokens.size() - 1; i >= 0; i--) {
iq.push_back(tokens[i]);
}
std::vector<Node> oq;
std::vector<Node> stack;
Node prev, tok;
int prevtyp = 0, toktyp = 0;
while (iq.size()) {
prev = tok;
prevtyp = toktyp;
tok = iq.back();
toktyp = toktype(tok);
iq.pop_back();
// Alphanumerics go straight to output queue
if (toktyp == ALPHANUM) {
oq.push_back(tok);
}
// Left parens go on stack and output queue
else if (toktyp == LPAREN) {
while (stack.size() && toktype(stack.back()) == TOKEN_SPLITTER) {
oq.push_back(stack.back());
stack.pop_back();
}
if (prevtyp != ALPHANUM && prevtyp != RPAREN) {
oq.push_back(token("id", tok.metadata));
}
stack.push_back(tok);
oq.push_back(tok);
}
// If rparen, keep moving from stack to output queue until lparen
else if (toktyp == RPAREN) {
while (stack.size() && toktype(stack.back()) != LPAREN) {
oq.push_back(stack.back());
stack.pop_back();
}
if (stack.size()) {
stack.pop_back();
}
oq.push_back(tok);
}
else if (toktyp == UNARY_OP) {
stack.push_back(tok);
}
// If token splitter, just push it to the stack
else if (toktyp == TOKEN_SPLITTER) {
while (stack.size() && toktype(stack.back()) == TOKEN_SPLITTER) {
oq.push_back(stack.back());
stack.pop_back();
}
stack.push_back(tok);
}
// If binary op, keep popping from stack while higher bedmas precedence
else if (toktyp == BINARY_OP) {
if (tok.val == "-" && prevtyp != ALPHANUM && prevtyp != RPAREN) {
stack.push_back(tok);
oq.push_back(token("0", tok.metadata));
}
else {
int prec = precedence(tok);
while (stack.size()
&& (toktype(stack.back()) == BINARY_OP
|| toktype(stack.back()) == UNARY_OP
|| toktype(stack.back()) == TOKEN_SPLITTER)
&& precedence(stack.back()) <= prec) {
oq.push_back(stack.back());
stack.pop_back();
}
stack.push_back(tok);
}
}
// Comma means finish evaluating the argument
else if (toktyp == COMMA) {
while (stack.size() && toktype(stack.back()) != LPAREN) {
oq.push_back(stack.back());
stack.pop_back();
}
}
}
while (stack.size()) {
oq.push_back(stack.back());
stack.pop_back();
}
return oq;
}
// Converts reverse polish notation into tree
Node treefy(std::vector<Node> stream) {
std::vector<Node> iq;
for (int i = stream.size() -1; i >= 0; i--) {
iq.push_back(stream[i]);
}
std::vector<Node> oq;
while (iq.size()) {
Node tok = iq.back();
iq.pop_back();
int typ = toktype(tok);
// If unary, take node off end of oq and wrap it with the operator
// If binary, do the same with two nodes
if (typ == UNARY_OP || typ == BINARY_OP || typ == TOKEN_SPLITTER) {
std::vector<Node> args;
int rounds = (typ == UNARY_OP) ? 1 : 2;
for (int i = 0; i < rounds; i++) {
if (oq.size() == 0) {
err("Line malformed, not enough args for "+tok.val,
tok.metadata);
}
args.push_back(oq.back());
oq.pop_back();
}
std::vector<Node> args2;
while (args.size()) {
args2.push_back(args.back());
args.pop_back();
}
oq.push_back(astnode(tok.val, args2, tok.metadata));
}
// If rparen, keep grabbing until we get to an lparen
else if (typ == RPAREN) {
std::vector<Node> args;
while (1) {
if (toktype(oq.back()) == LPAREN) break;
args.push_back(oq.back());
oq.pop_back();
if (!oq.size()) err("Bracket without matching", tok.metadata);
}
oq.pop_back();
args.push_back(oq.back());
oq.pop_back();
// We represent a[b] as (access a b)
if (tok.val == "]")
args.push_back(token("access", tok.metadata));
if (args.back().type == ASTNODE)
args.push_back(token("fun", tok.metadata));
std::string fun = args.back().val;
args.pop_back();
// We represent [1,2,3] as (array_lit 1 2 3)
if (fun == "access" && args.size() && args.back().val == "id") {
fun = "array_lit";
args.pop_back();
}
std::vector<Node> args2;
while (args.size()) {
args2.push_back(args.back());
args.pop_back();
}
// When evaluating 2 + (3 * 5), the shunting yard algo turns that
// into 2 ( id 3 5 * ) +, effectively putting "id" as a dummy
// function where the algo was expecting a function to call the
// thing inside the brackets. This reverses that step
if (fun == "id" && args2.size() == 1) {
oq.push_back(args2[0]);
}
else {
oq.push_back(astnode(fun, args2, tok.metadata));
}
}
else oq.push_back(tok);
// This is messy, but has to be done. Import/inset other files here
std::string v = oq.back().val;
if ((v == "inset" || v == "import" || v == "create")
&& oq.back().args.size() == 1
&& oq.back().args[0].type == TOKEN) {
int lastSlashPos = tok.metadata.file.rfind("/");
std::string root;
if (lastSlashPos >= 0)
root = tok.metadata.file.substr(0, lastSlashPos) + "/";
else
root = "";
std::string filename = oq.back().args[0].val;
filename = filename.substr(1, filename.length() - 2);
if (!exists(root + filename))
err("File does not exist: "+root + filename, tok.metadata);
oq.back().args.pop_back();
oq.back().args.push_back(parseSerpent(root + filename));
}
//Useful for debugging
//for (int i = 0; i < oq.size(); i++) {
// std::cerr << printSimple(oq[i]) << " ";
//}
//std::cerr << " <-\n";
}
// Output must have one argument
if (oq.size() == 0) {
err("Output blank", Metadata());
}
else if (oq.size() > 1) {
return asn("multi", oq, oq[0].metadata);
}
return oq[0];
}
// Parses one line of serpent
Node parseSerpentTokenStream(std::vector<Node> s) {
return treefy(shuntingYard(s));
}
// Count spaces at beginning of line
int spaceCount(std::string s) {
unsigned pos = 0;
while (pos < s.length() && (s[pos] == ' ' || s[pos] == '\t'))
pos++;
return pos;
}
// Is this a command that takes an argument on the same line?
bool bodied(std::string tok) {
return tok == "if" || tok == "elif" || tok == "while"
|| tok == "with" || tok == "def" || tok == "extern"
|| tok == "data" || tok == "assert" || tok == "return"
|| tok == "fun" || tok == "scope" || tok == "macro"
|| tok == "type";
}
// Are the two commands meant to continue each other?
bool bodiedContinued(std::string prev, std::string tok) {
return (prev == "if" && tok == "elif")
|| (prev == "elif" && tok == "else")
|| (prev == "elif" && tok == "elif")
|| (prev == "if" && tok == "else");
}
// Is a line of code empty?
bool isLineEmpty(std::string line) {
std::vector<Node> tokens = tokenize(line);
if (!tokens.size() || tokens[0].val == "#" || tokens[0].val == "//")
return true;
return false;
}
// Parse lines of serpent (helper function)
Node parseLines(std::vector<std::string> lines, Metadata metadata, int sp) {
std::vector<Node> o;
int origLine = metadata.ln;
unsigned i = 0;
while (i < lines.size()) {
metadata.ln = origLine + i;
std::string main = lines[i];
if (isLineEmpty(main)) {
i += 1;
continue;
}
int spaces = spaceCount(main);
if (spaces != sp) {
err("Indent mismatch", metadata);
}
// Tokenize current line
std::vector<Node> tokens = tokenize(main.substr(sp), metadata);
// Remove comments
std::vector<Node> tokens2;
for (unsigned j = 0; j < tokens.size(); j++) {
if (tokens[j].val == "#" || tokens[j].val == "//") break;
tokens2.push_back(tokens[j]);
}
bool expectingChildBlock = false;
if (tokens2.size() > 0 && tokens2.back().val == ":") {
tokens2.pop_back();
expectingChildBlock = true;
}
// Parse current line
Node out = parseSerpentTokenStream(tokens2);
// Parse child block
int childIndent = 999999;
std::vector<std::string> childBlock;
while (1) {
i++;
if (i >= lines.size())
break;
bool ile = isLineEmpty(lines[i]);
if (!ile) {
int spaces = spaceCount(lines[i]);
if (spaces <= sp) break;
childBlock.push_back(lines[i]);
if (spaces < childIndent) childIndent = spaces;
}
else childBlock.push_back("");
}
// Child block empty?
bool cbe = true;
for (unsigned i = 0; i < childBlock.size(); i++) {
if (childBlock[i].length() > 0) { cbe = false; break; }
}
// Add child block to AST
if (expectingChildBlock) {
if (cbe)
err("Expected indented child block!", out.metadata);
out.type = ASTNODE;
metadata.ln += 1;
out.args.push_back(parseLines(childBlock, metadata, childIndent));
metadata.ln -= 1;
}
else if (!cbe)
err("Did not expect indented child block!", out.metadata);
else if (out.args.size() && out.args[out.args.size() - 1].val == ":") {
Node n = out.args[out.args.size() - 1];
out.args.pop_back();
out.args.push_back(n.args[0]);
out.args.push_back(n.args[1]);
}
// Bring back if / elif into AST
if (bodied(tokens[0].val)) {
if (out.val != "multi") {
// token not being used in bodied form
}
else if (out.args[0].val == "id")
out = astnode(tokens[0].val, out.args[1].args, out.metadata);
else if (out.args[0].type == TOKEN) {
std::vector<Node> out2;
for (unsigned i = 1; i < out.args.size(); i++)
out2.push_back(out.args[i]);
out = astnode(tokens[0].val, out2, out.metadata);
}
else
out = astnode("fun", out.args, out.metadata);
}
// Multi not supported
if (out.val == "multi")
err("Multiple expressions or unclosed bracket", out.metadata);
// Convert top-level colon expressions into non-colon expressions;
// makes if statements and the like equivalent indented or not
//if (out.val == ":" && out.args[0].type == TOKEN)
// out = asn(out.args[0].val, out.args[1], out.metadata);
//if (bodied(tokens[0].val) && out.args[0].val == ":")
// out = asn(tokens[0].val, out.args[0].args);
if (o.size() == 0 || o.back().type == TOKEN) {
o.push_back(out);
continue;
}
// This is a little complicated. Basically, the idea here is to build
// constructions like [if [< x 5] [a] [elif [< x 10] [b] [else [c]]]]
std::vector<Node> u;
u.push_back(o.back());
if (bodiedContinued(o.back().val, out.val)) {
while (1) {
if (!bodiedContinued(u.back().val, out.val)) {
u.pop_back();
break;
}
if (!u.back().args.size()
|| !bodiedContinued(u.back().val, u.back().args.back().val)) {
break;
}
u.push_back(u.back().args.back());
}
u.back().args.push_back(out);
while (u.size() > 1) {
Node v = u.back();
u.pop_back();
u.back().args.pop_back();
u.back().args.push_back(v);
}
o.pop_back();
o.push_back(u[0]);
}
else o.push_back(out);
}
if (o.size() == 1)
return o[0];
else if (o.size())
return astnode("seq", o, o[0].metadata);
else
return astnode("seq", o, Metadata());
}
// Parses serpent code
Node parseSerpent(std::string s) {
std::string input = s;
std::string file = "main";
if (exists(s)) {
file = s;
input = get_file_contents(s);
}
return parseLines(splitLines(input), Metadata(file, 0, 0), 0);
}
using namespace std;

View File

@@ -0,0 +1,13 @@
#ifndef ETHSERP_PARSER
#define ETHSERP_PARSER
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// Serpent text -> parse tree
Node parseSerpent(std::string s);
#endif

View File

@@ -0,0 +1,299 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "bignum.h"
#include "rewriteutils.h"
#include "optimize.h"
#include "preprocess.h"
#include "functions.h"
#include "opcodes.h"
// Convert a function of the form (def (f x y z) (do stuff)) into
// (if (first byte of ABI is correct) (seq (setup x y z) (do stuff)))
Node convFunction(Node node, int functionCount) {
std::string prefix = "_temp"+mkUniqueToken()+"_";
Metadata m = node.metadata;
if (node.args.size() != 2)
err("Malformed def!", m);
// Collect the list of variable names and variable byte counts
Node unpack = unpackArguments(node.args[0].args, m);
// And the actual code
Node body = node.args[1];
// Main LLL-based function body
return astnode("if",
astnode("eq",
astnode("get", token("__funid", m), m),
token(unsignedToDecimal(functionCount), m),
m),
astnode("seq", unpack, body, m));
}
// Populate an svObj with the arguments needed to determine
// the storage position of a node
svObj getStorageVars(svObj pre, Node node, std::string prefix,
int index) {
Metadata m = node.metadata;
if (!pre.globalOffset.size()) pre.globalOffset = "0";
std::vector<Node> h;
std::vector<std::string> coefficients;
// Array accesses or atoms
if (node.val == "access" || node.type == TOKEN) {
std::string tot = "1";
h = listfyStorageAccess(node);
coefficients.push_back("1");
for (unsigned i = h.size() - 1; i >= 1; i--) {
// Array sizes must be constant or at least arithmetically
// evaluable at compile time
if (!isPureArithmetic(h[i]))
err("Array size must be fixed value", m);
// Create a list of the coefficient associated with each
// array index
coefficients.push_back(decimalMul(coefficients.back(), h[i].val));
}
}
// Tuples
else {
int startc;
// Handle the (fun <fun_astnode> args...) case
if (node.val == "fun") {
startc = 1;
h = listfyStorageAccess(node.args[0]);
}
// Handle the (<fun_name> args...) case, which
// the serpent parser produces when the function
// is a simple name and not a complex astnode
else {
startc = 0;
h = listfyStorageAccess(token(node.val, m));
}
svObj sub = pre;
sub.globalOffset = "0";
// Evaluate tuple elements recursively
for (unsigned i = startc; i < node.args.size(); i++) {
sub = getStorageVars(sub,
node.args[i],
prefix+h[0].val.substr(2)+".",
i-startc);
}
coefficients.push_back(sub.globalOffset);
for (unsigned i = h.size() - 1; i >= 1; i--) {
// Array sizes must be constant or at least arithmetically
// evaluable at compile time
if (!isPureArithmetic(h[i]))
err("Array size must be fixed value", m);
// Create a list of the coefficient associated with each
// array index
coefficients.push_back(decimalMul(coefficients.back(), h[i].val));
}
pre.offsets = sub.offsets;
pre.coefficients = sub.coefficients;
pre.nonfinal = sub.nonfinal;
pre.nonfinal[prefix+h[0].val.substr(2)] = true;
}
pre.coefficients[prefix+h[0].val.substr(2)] = coefficients;
pre.offsets[prefix+h[0].val.substr(2)] = pre.globalOffset;
pre.indices[prefix+h[0].val.substr(2)] = index;
if (decimalGt(tt176, coefficients.back()))
pre.globalOffset = decimalAdd(pre.globalOffset, coefficients.back());
return pre;
}
// Preprocess input containing functions
//
// localExterns is a map of the form, eg,
//
// { x: { foo: 0, bar: 1, baz: 2 }, y: { qux: 0, foo: 1 } ... }
//
// localExternSigs is a map of the form, eg,
//
// { x : { foo: iii, bar: iis, baz: ia }, y: { qux: i, foo: as } ... }
//
// Signifying that x.foo = 0, x.baz = 2, y.foo = 1, etc
// and that x.foo has three integers as arguments, x.bar has two
// integers and a variable-length string, and baz has an integer
// and an array
//
// globalExterns is a one-level map, eg from above
//
// { foo: 1, bar: 1, baz: 2, qux: 0 }
//
// globalExternSigs is a one-level map, eg from above
//
// { foo: as, bar: iis, baz: ia, qux: i}
//
// Note that globalExterns and globalExternSigs may be ambiguous
// Also, a null signature implies an infinite tail of integers
preprocessResult preprocessInit(Node inp) {
Metadata m = inp.metadata;
if (inp.val != "seq")
inp = astnode("seq", inp, m);
std::vector<Node> empty = std::vector<Node>();
Node init = astnode("seq", empty, m);
Node shared = astnode("seq", empty, m);
std::vector<Node> any;
std::vector<Node> functions;
preprocessAux out = preprocessAux();
out.localExterns["self"] = std::map<std::string, int>();
int functionCount = 0;
int storageDataCount = 0;
for (unsigned i = 0; i < inp.args.size(); i++) {
Node obj = inp.args[i];
// Functions
if (obj.val == "def") {
if (obj.args.size() == 0)
err("Empty def", m);
std::string funName = obj.args[0].val;
// Init, shared and any are special functions
if (funName == "init" || funName == "shared" || funName == "any") {
if (obj.args[0].args.size())
err(funName+" cannot have arguments", m);
}
if (funName == "init") init = obj.args[1];
else if (funName == "shared") shared = obj.args[1];
else if (funName == "any") any.push_back(obj.args[1]);
else {
// Other functions
functions.push_back(convFunction(obj, functionCount));
out.localExterns["self"][obj.args[0].val] = functionCount;
out.localExternSigs["self"][obj.args[0].val]
= getSignature(obj.args[0].args);
functionCount++;
}
}
// Extern declarations
else if (obj.val == "extern") {
std::string externName = obj.args[0].val;
Node al = obj.args[1];
if (!out.localExterns.count(externName))
out.localExterns[externName] = std::map<std::string, int>();
for (unsigned i = 0; i < al.args.size(); i++) {
if (al.args[i].val == ":") {
std::string v = al.args[i].args[0].val;
std::string sig = al.args[i].args[1].val;
out.globalExterns[v] = i;
out.globalExternSigs[v] = sig;
out.localExterns[externName][v] = i;
out.localExternSigs[externName][v] = sig;
}
else {
std::string v = al.args[i].val;
out.globalExterns[v] = i;
out.globalExternSigs[v] = "";
out.localExterns[externName][v] = i;
out.localExternSigs[externName][v] = "";
}
}
}
// Custom macros
else if (obj.val == "macro") {
// Rules for valid macros:
//
// There are only four categories of valid macros:
//
// 1. a macro where the outer function is something
// which is NOT an existing valid function/extern/datum
// 2. a macro of the form set(c(x), d) where c must NOT
// be an existing valid function/extern/datum
// 3. something of the form access(c(x)), where c must NOT
// be an existing valid function/extern/datum
// 4. something of the form set(access(c(x)), d) where c must
// NOT be an existing valid function/extern/datum
bool valid = false;
Node pattern = obj.args[0];
Node substitution = obj.args[1];
if (opcode(pattern.val) < 0 && !isValidFunctionName(pattern.val))
valid = true;
if (pattern.val == "set" &&
opcode(pattern.args[0].val) < 0 &&
!isValidFunctionName(pattern.args[0].val))
valid = true;
if (pattern.val == "access" &&
opcode(pattern.args[0].val) < 0 &&
!isValidFunctionName(pattern.args[0].val))
if (pattern.val == "set" &&
pattern.args[0].val == "access" &&
opcode(pattern.args[0].args[0].val) < 0 &&
!isValidFunctionName(pattern.args[0].args[0].val))
valid = true;
if (valid) {
out.customMacros.push_back(rewriteRule(pattern, substitution));
}
}
// Variable types
else if (obj.val == "type") {
std::string typeName = obj.args[0].val;
std::vector<Node> vars = obj.args[1].args;
for (unsigned i = 0; i < vars.size(); i++)
out.types[vars[i].val] = typeName;
}
// Storage variables/structures
else if (obj.val == "data") {
out.storageVars = getStorageVars(out.storageVars,
obj.args[0],
"",
storageDataCount);
storageDataCount += 1;
}
else any.push_back(obj);
}
std::vector<Node> main;
if (shared.args.size()) main.push_back(shared);
if (init.args.size()) main.push_back(init);
std::vector<Node> code;
if (shared.args.size()) code.push_back(shared);
for (unsigned i = 0; i < any.size(); i++)
code.push_back(any[i]);
for (unsigned i = 0; i < functions.size(); i++)
code.push_back(functions[i]);
Node codeNode;
if (functions.size() > 0) {
codeNode = astnode("with",
token("__funid", m),
astnode("byte",
token("0", m),
astnode("calldataload", token("0", m), m),
m),
astnode("seq", code, m),
m);
}
else codeNode = astnode("seq", code, m);
main.push_back(astnode("~return",
token("0", m),
astnode("lll",
codeNode,
token("0", m),
m),
m));
Node result;
if (main.size() == 1) result = main[0];
else result = astnode("seq", main, inp.metadata);
return preprocessResult(result, out);
}
preprocessResult processTypes (preprocessResult pr) {
preprocessAux aux = pr.second;
Node node = pr.first;
if (node.type == TOKEN && aux.types.count(node.val)) {
node = asn(aux.types[node.val], node, node.metadata);
}
else if (node.val == "untyped")
return preprocessResult(node.args[0], aux);
else {
for (unsigned i = 0; i < node.args.size(); i++) {
node.args[i] =
processTypes(preprocessResult(node.args[i], aux)).first;
}
}
return preprocessResult(node, aux);
}
preprocessResult preprocess(Node n) {
return processTypes(preprocessInit(n));
}

View File

@@ -0,0 +1,58 @@
#ifndef ETHSERP_PREPROCESSOR
#define ETHSERP_PREPROCESSOR
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// Storage variable index storing object
struct svObj {
std::map<std::string, std::string> offsets;
std::map<std::string, int> indices;
std::map<std::string, std::vector<std::string> > coefficients;
std::map<std::string, bool> nonfinal;
std::string globalOffset;
};
class rewriteRule {
public:
rewriteRule(Node p, Node s) {
pattern = p;
substitution = s;
}
Node pattern;
Node substitution;
};
// Preprocessing result storing object
class preprocessAux {
public:
preprocessAux() {
globalExterns = std::map<std::string, int>();
localExterns = std::map<std::string, std::map<std::string, int> >();
localExterns["self"] = std::map<std::string, int>();
}
std::map<std::string, int> globalExterns;
std::map<std::string, std::string> globalExternSigs;
std::map<std::string, std::map<std::string, int> > localExterns;
std::map<std::string, std::map<std::string, std::string> > localExternSigs;
std::vector<rewriteRule> customMacros;
std::map<std::string, std::string> types;
svObj storageVars;
};
#define preprocessResult std::pair<Node, preprocessAux>
// Populate an svObj with the arguments needed to determine
// the storage position of a node
svObj getStorageVars(svObj pre, Node node, std::string prefix="",
int index=0);
// Preprocess a function (see cpp for details)
preprocessResult preprocess(Node inp);
#endif

View File

@@ -0,0 +1,173 @@
#include <Python.h>
#include "structmember.h"
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "funcs.h"
#define PYMETHOD(name, FROM, method, TO) \
static PyObject * name(PyObject *, PyObject *args) { \
try { \
FROM(med) \
return TO(method(med)); \
} \
catch (std::string e) { \
PyErr_SetString(PyExc_Exception, e.c_str()); \
return NULL; \
} \
}
#define FROMSTR(v) \
const char *command; \
int len; \
if (!PyArg_ParseTuple(args, "s#", &command, &len)) \
return NULL; \
std::string v = std::string(command, len); \
#define FROMNODE(v) \
PyObject *node; \
if (!PyArg_ParseTuple(args, "O", &node)) \
return NULL; \
Node v = cppifyNode(node);
#define FROMLIST(v) \
PyObject *node; \
if (!PyArg_ParseTuple(args, "O", &node)) \
return NULL; \
std::vector<Node> v = cppifyNodeList(node);
// Convert metadata into python wrapper form [file, ln, ch]
PyObject* pyifyMetadata(Metadata m) {
PyObject* a = PyList_New(0);
PyList_Append(a, Py_BuildValue("s#", m.file.c_str(), m.file.length()));
PyList_Append(a, Py_BuildValue("i", m.ln));
PyList_Append(a, Py_BuildValue("i", m.ch));
return a;
}
// Convert node into python wrapper form
// [token=0/astnode=1, val, metadata, args]
PyObject* pyifyNode(Node n) {
PyObject* a = PyList_New(0);
PyList_Append(a, Py_BuildValue("i", n.type == ASTNODE));
PyList_Append(a, Py_BuildValue("s#", n.val.c_str(), n.val.length()));
PyList_Append(a, pyifyMetadata(n.metadata));
for (unsigned i = 0; i < n.args.size(); i++)
PyList_Append(a, pyifyNode(n.args[i]));
return a;
}
// Convert string into python wrapper form
PyObject* pyifyString(std::string s) {
return Py_BuildValue("s#", s.c_str(), s.length());
}
// Convert list of nodes into python wrapper form
PyObject* pyifyNodeList(std::vector<Node> n) {
PyObject* a = PyList_New(0);
for (unsigned i = 0; i < n.size(); i++)
PyList_Append(a, pyifyNode(n[i]));
return a;
}
// Convert pyobject int into normal form
int cppifyInt(PyObject* o) {
int out;
if (!PyArg_Parse(o, "i", &out))
err("Argument should be integer", Metadata());
return out;
}
// Convert pyobject string into normal form
std::string cppifyString(PyObject* o) {
const char *command;
if (!PyArg_Parse(o, "s", &command))
err("Argument should be string", Metadata());
return std::string(command);
}
// Convert metadata from python wrapper form
Metadata cppifyMetadata(PyObject* o) {
std::string file = cppifyString(PyList_GetItem(o, 0));
int ln = cppifyInt(PyList_GetItem(o, 1));
int ch = cppifyInt(PyList_GetItem(o, 2));
return Metadata(file, ln, ch);
}
// Convert node from python wrapper form
Node cppifyNode(PyObject* o) {
Node n;
int isAstNode = cppifyInt(PyList_GetItem(o, 0));
n.type = isAstNode ? ASTNODE : TOKEN;
n.val = cppifyString(PyList_GetItem(o, 1));
n.metadata = cppifyMetadata(PyList_GetItem(o, 2));
std::vector<Node> args;
for (int i = 3; i < PyList_Size(o); i++) {
args.push_back(cppifyNode(PyList_GetItem(o, i)));
}
n.args = args;
return n;
}
//Convert list of nodes into normal form
std::vector<Node> cppifyNodeList(PyObject* o) {
std::vector<Node> out;
for (int i = 0; i < PyList_Size(o); i++) {
out.push_back(cppifyNode(PyList_GetItem(o,i)));
}
return out;
}
PYMETHOD(ps_compile, FROMSTR, compile, pyifyString)
PYMETHOD(ps_compile_chunk, FROMSTR, compileChunk, pyifyString)
PYMETHOD(ps_compile_to_lll, FROMSTR, compileToLLL, pyifyNode)
PYMETHOD(ps_compile_chunk_to_lll, FROMSTR, compileChunkToLLL, pyifyNode)
PYMETHOD(ps_compile_lll, FROMNODE, compileLLL, pyifyString)
PYMETHOD(ps_parse, FROMSTR, parseSerpent, pyifyNode)
PYMETHOD(ps_rewrite, FROMNODE, rewrite, pyifyNode)
PYMETHOD(ps_rewrite_chunk, FROMNODE, rewriteChunk, pyifyNode)
PYMETHOD(ps_pretty_compile, FROMSTR, prettyCompile, pyifyNodeList)
PYMETHOD(ps_pretty_compile_chunk, FROMSTR, prettyCompileChunk, pyifyNodeList)
PYMETHOD(ps_pretty_compile_lll, FROMNODE, prettyCompileLLL, pyifyNodeList)
PYMETHOD(ps_serialize, FROMLIST, serialize, pyifyString)
PYMETHOD(ps_deserialize, FROMSTR, deserialize, pyifyNodeList)
PYMETHOD(ps_parse_lll, FROMSTR, parseLLL, pyifyNode)
static PyMethodDef PyextMethods[] = {
{"compile", ps_compile, METH_VARARGS,
"Compile code."},
{"compile_chunk", ps_compile_chunk, METH_VARARGS,
"Compile code chunk (no wrappers)."},
{"compile_to_lll", ps_compile_to_lll, METH_VARARGS,
"Compile code to LLL."},
{"compile_chunk_to_lll", ps_compile_chunk_to_lll, METH_VARARGS,
"Compile code chunk to LLL (no wrappers)."},
{"compile_lll", ps_compile_lll, METH_VARARGS,
"Compile LLL to EVM."},
{"parse", ps_parse, METH_VARARGS,
"Parse serpent"},
{"rewrite", ps_rewrite, METH_VARARGS,
"Rewrite parsed serpent to LLL"},
{"rewrite_chunk", ps_rewrite_chunk, METH_VARARGS,
"Rewrite parsed serpent to LLL (no wrappers)"},
{"pretty_compile", ps_pretty_compile, METH_VARARGS,
"Compile to EVM opcodes"},
{"pretty_compile_chunk", ps_pretty_compile_chunk, METH_VARARGS,
"Compile chunk to EVM opcodes (no wrappers)"},
{"pretty_compile_lll", ps_pretty_compile_lll, METH_VARARGS,
"Compile LLL to EVM opcodes"},
{"serialize", ps_serialize, METH_VARARGS,
"Convert EVM opcodes to bin"},
{"deserialize", ps_deserialize, METH_VARARGS,
"Convert EVM bin to opcodes"},
{"parse_lll", ps_parse_lll, METH_VARARGS,
"Parse LLL"},
{NULL, NULL, 0, NULL} /* Sentinel */
};
PyMODINIT_FUNC initserpent_pyext(void)
{
Py_InitModule( "serpent_pyext", PyextMethods );
}

View File

@@ -0,0 +1 @@
from serpent import *

View File

@@ -0,0 +1,804 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "bignum.h"
#include "optimize.h"
#include "rewriteutils.h"
#include "preprocess.h"
#include "functions.h"
#include "opcodes.h"
// Rewrite rules
std::string macros[][2] = {
{
"(seq $x)",
"$x"
},
{
"(seq (seq) $x)",
"$x"
},
{
"(+= $a $b)",
"(set $a (+ $a $b))"
},
{
"(*= $a $b)",
"(set $a (* $a $b))"
},
{
"(-= $a $b)",
"(set $a (- $a $b))"
},
{
"(/= $a $b)",
"(set $a (/ $a $b))"
},
{
"(%= $a $b)",
"(set $a (% $a $b))"
},
{
"(^= $a $b)",
"(set $a (^ $a $b))"
},
{
"(!= $a $b)",
"(iszero (eq $a $b))"
},
{
"(assert $x)",
"(unless $x (stop))"
},
{
"(min $a $b)",
"(with $1 $a (with $2 $b (if (lt $1 $2) $1 $2)))"
},
{
"(max $a $b)",
"(with $1 $a (with $2 $b (if (lt $1 $2) $2 $1)))"
},
{
"(smin $a $b)",
"(with $1 $a (with $2 $b (if (slt $1 $2) $1 $2)))"
},
{
"(smax $a $b)",
"(with $1 $a (with $2 $b (if (slt $1 $2) $2 $1)))"
},
{
"(if $cond $do (else $else))",
"(if $cond $do $else)"
},
{
"(code $code)",
"$code"
},
{
"(slice $arr $pos)",
"(add $arr (mul 32 $pos))",
},
{
"(array $len)",
"(alloc (mul 32 $len))"
},
{
"(while $cond $do)",
"(until (iszero $cond) $do)",
},
{
"(while (iszero $cond) $do)",
"(until $cond $do)",
},
{
"(if $cond $do)",
"(unless (iszero $cond) $do)",
},
{
"(if (iszero $cond) $do)",
"(unless $cond $do)",
},
{
"(access (. self storage) $ind)",
"(sload $ind)"
},
{
"(access $var $ind)",
"(mload (add $var (mul 32 $ind)))"
},
{
"(set (access (. self storage) $ind) $val)",
"(sstore $ind $val)"
},
{
"(set (access $var $ind) $val)",
"(mstore (add $var (mul 32 $ind)) $val)"
},
{
"(getch $var $ind)",
"(mod (mload (sub (add $var $ind) 31)) 256)"
},
{
"(setch $var $ind $val)",
"(mstore8 (add $var $ind) $val)",
},
{
"(send $to $value)",
"(~call (sub (gas) 25) $to $value 0 0 0 0)"
},
{
"(send $gas $to $value)",
"(~call $gas $to $value 0 0 0 0)"
},
{
"(sha3 $x)",
"(seq (set $1 $x) (~sha3 (ref $1) 32))"
},
{
"(sha3 $mstart (= chars $msize))",
"(~sha3 $mstart $msize)"
},
{
"(sha3 $mstart $msize)",
"(~sha3 $mstart (mul 32 $msize))"
},
{
"(id $0)",
"$0"
},
{
"(return $x)",
"(seq (set $1 $x) (~return (ref $1) 32))"
},
{
"(return $mstart (= chars $msize))",
"(~return $mstart $msize)"
},
{
"(return $start $len)",
"(~return $start (mul 32 $len))"
},
{
"(&& $x $y)",
"(if $x $y 0)"
},
{
"(|| $x $y)",
"(with $1 $x (if $1 $1 $y))"
},
{
"(>= $x $y)",
"(iszero (slt $x $y))"
},
{
"(<= $x $y)",
"(iszero (sgt $x $y))"
},
{
"(create $code)",
"(create 0 $code)"
},
{
"(create $endowment $code)",
"(with $1 (msize) (create $endowment (get $1) (lll (outer $code) (msize))))"
},
{
"(sha256 $x)",
"(with $1 (alloc 64) (seq (mstore (add (get $1) 32) $x) (pop (~call 101 2 0 (add (get $1) 32) 32 (get $1) 32)) (mload (get $1))))"
},
{
"(sha256 $arr (= chars $sz))",
"(with $1 (alloc 32) (seq (pop (~call 101 2 0 $arr $sz (get $1) 32)) (mload (get $1))))"
},
{
"(sha256 $arr $sz)",
"(with $1 (alloc 32) (seq (pop (~call 101 2 0 $arr (mul 32 $sz) (get $1) 32)) (mload (get $1))))"
},
{
"(ripemd160 $x)",
"(with $1 (alloc 64) (seq (mstore (add (get $1) 32) $x) (pop (~call 101 3 0 (add (get $1) 32) 32 (get $1) 32)) (mload (get $1))))"
},
{
"(ripemd160 $arr (= chars $sz))",
"(with $1 (alloc 32) (seq (pop (~call 101 3 0 $arr $sz (mload $1) 32)) (mload (get $1))))"
},
{
"(ripemd160 $arr $sz)",
"(with $1 (alloc 32) (seq (pop (~call 101 3 0 $arr (mul 32 $sz) (get $1) 32)) (mload (get $1))))"
},
{
"(ecrecover $h $v $r $s)",
"(with $1 (alloc 160) (seq (mstore (get $1) $h) (mstore (add (get $1) 32) $v) (mstore (add (get $1) 64) $r) (mstore (add (get $1) 96) $s) (pop (~call 101 1 0 (get $1) 128 (add (get $1 128)) 32)) (mload (add (get $1) 128))))"
},
{
"(inset $x)",
"$x"
},
{
"(create $x)",
"(with $1 (msize) (create $val (get $1) (lll $code (get $1))))"
},
{
"(with (= $var $val) $cond)",
"(with $var $val $cond)"
},
{
"(log $t1)",
"(~log1 0 0 $t1)"
},
{
"(log $t1 $t2)",
"(~log2 0 0 $t1 $t2)"
},
{
"(log $t1 $t2 $t3)",
"(~log3 0 0 $t1 $t2 $t3)"
},
{
"(log $t1 $t2 $t3 $t4)",
"(~log4 0 0 $t1 $t2 $t3 $t4)"
},
{
"(logarr $a $sz)",
"(~log0 $a (mul 32 $sz))"
},
{
"(logarr $a $sz $t1)",
"(~log1 $a (mul 32 $sz) $t1)"
},
{
"(logarr $a $sz $t1 $t2)",
"(~log2 $a (mul 32 $sz) $t1 $t2)"
},
{
"(logarr $a $sz $t1 $t2 $t3)",
"(~log3 $a (mul 32 $sz) $t1 $t2 $t3)"
},
{
"(logarr $a $sz $t1 $t2 $t3 $t4)",
"(~log4 $a (mul 32 $sz) $t1 $t2 $t3 $t4)"
},
{
"(save $loc $array (= chars $count))",
"(with $location (ref $loc) (with $c $count (with $end (div $c 32) (with $i 0 (seq (while (slt $i $end) (seq (sstore (add $i $location) (access $array $i)) (set $i (add $i 1)))) (sstore (add $i $location) (~and (access $array $i) (sub 0 (exp 256 (sub 32 (mod $c 32)))))))))))"
},
{
"(save $loc $array $count)",
"(with $location (ref $loc) (with $end $count (with $i 0 (while (slt $i $end) (seq (sstore (add $i $location) (access $array $i)) (set $i (add $i 1)))))))"
},
{
"(load $loc (= chars $count))",
"(with $location (ref $loc) (with $c $count (with $a (alloc $c) (with $i 0 (seq (while (slt $i (div $c 32)) (seq (set (access $a $i) (sload (add $location $i))) (set $i (add $i 1)))) (set (access $a $i) (~and (sload (add $location $i)) (sub 0 (exp 256 (sub 32 (mod $c 32)))))) $a)))))"
},
{
"(load $loc $count)",
"(with $location (ref $loc) (with $c $count (with $a (alloc $c) (with $i 0 (seq (while (slt $i $c) (seq (set (access $a $i) (sload (add $location $i))) (set $i (add $i 1)))) $a)))))"
},
{
"(unsafe_mcopy $to $from $sz)",
"(with _sz $sz (with _from $from (with _to $to (seq (comment STARTING UNSAFE MCOPY) (with _i 0 (while (lt _i _sz) (seq (mstore (add $to _i) (mload (add _from _i))) (set _i (add _i 32)))))))))"
},
{
"(mcopy $to $from $_sz)",
"(with _to $to (with _from $from (with _sz $sz (seq (comment STARTING MCOPY (with _i 0 (seq (while (lt (add _i 31) _sz) (seq (mstore (add _to _i) (mload (add _from _i))) (set _i (add _i 32)))) (with _mask (exp 256 (sub 32 (mod _sz 32))) (mstore (add $to _i) (add (mod (mload (add $to _i)) _mask) (and (mload (add $from _i)) (sub 0 _mask))))))))))))"
},
{ "(. msg sender)", "(caller)" },
{ "(. msg value)", "(callvalue)" },
{ "(. tx gasprice)", "(gasprice)" },
{ "(. tx origin)", "(origin)" },
{ "(. tx gas)", "(gas)" },
{ "(. $x balance)", "(balance $x)" },
{ "self", "(address)" },
{ "(. block prevhash)", "(prevhash)" },
{ "(. block coinbase)", "(coinbase)" },
{ "(. block timestamp)", "(timestamp)" },
{ "(. block number)", "(number)" },
{ "(. block difficulty)", "(difficulty)" },
{ "(. block gaslimit)", "(gaslimit)" },
{ "stop", "(stop)" },
{ "---END---", "" } //Keep this line at the end of the list
};
std::vector<rewriteRule> nodeMacros;
// Token synonyms
std::string synonyms[][2] = {
{ "or", "||" },
{ "and", "&&" },
{ "|", "~or" },
{ "&", "~and" },
{ "elif", "if" },
{ "!", "iszero" },
{ "~", "~not" },
{ "not", "iszero" },
{ "string", "alloc" },
{ "+", "add" },
{ "-", "sub" },
{ "*", "mul" },
{ "/", "sdiv" },
{ "^", "exp" },
{ "**", "exp" },
{ "%", "smod" },
{ "<", "slt" },
{ ">", "sgt" },
{ "=", "set" },
{ "==", "eq" },
{ ":", "kv" },
{ "---END---", "" } //Keep this line at the end of the list
};
// Custom setters (need to be registered separately
// for use with managed storage)
std::string setters[][2] = {
{ "+=", "+" },
{ "-=", "-" },
{ "*=", "*" },
{ "/=", "/" },
{ "%=", "%" },
{ "^=", "^" },
{ "---END---", "" } //Keep this line at the end of the list
};
// Processes mutable array literals
Node array_lit_transform(Node node) {
std::string prefix = "_temp"+mkUniqueToken() + "_";
Metadata m = node.metadata;
std::map<std::string, Node> d;
std::string o = "(seq (set $arr (alloc "+utd(node.args.size()*32)+"))";
for (unsigned i = 0; i < node.args.size(); i++) {
o += " (mstore (add (get $arr) "+utd(i * 32)+") $"+utd(i)+")";
d[utd(i)] = node.args[i];
}
o += " (get $arr))";
return subst(parseLLL(o), d, prefix, m);
}
Node apply_rules(preprocessResult pr);
// Transform "<variable>.<fun>(args...)" into
// a call
Node dotTransform(Node node, preprocessAux aux) {
Metadata m = node.metadata;
// We're gonna make lots of temporary variables,
// so set up a unique flag for them
std::string prefix = "_temp"+mkUniqueToken()+"_";
// Check that the function name is a token
if (node.args[0].args[1].type == ASTNODE)
err("Function name must be static", m);
Node dotOwner = node.args[0].args[0];
std::string dotMember = node.args[0].args[1].val;
// kwargs = map of special arguments
std::map<std::string, Node> kwargs;
kwargs["value"] = token("0", m);
kwargs["gas"] = subst(parseLLL("(- (gas) 25)"), msn(), prefix, m);
// Search for as=? and call=code keywords, and isolate the actual
// function arguments
std::vector<Node> fnargs;
std::string as = "";
std::string op = "call";
for (unsigned i = 1; i < node.args.size(); i++) {
fnargs.push_back(node.args[i]);
Node arg = fnargs.back();
if (arg.val == "=" || arg.val == "set") {
if (arg.args[0].val == "as")
as = arg.args[1].val;
if (arg.args[0].val == "call" && arg.args[1].val == "code")
op = "callcode";
if (arg.args[0].val == "gas")
kwargs["gas"] = arg.args[1];
if (arg.args[0].val == "value")
kwargs["value"] = arg.args[1];
if (arg.args[0].val == "outsz")
kwargs["outsz"] = arg.args[1];
}
}
if (dotOwner.val == "self") {
if (as.size()) err("Cannot use \"as\" when calling self!", m);
as = dotOwner.val;
}
// Determine the funId and sig assuming the "as" keyword was used
int funId = 0;
std::string sig;
if (as.size() > 0 && aux.localExterns.count(as)) {
if (!aux.localExterns[as].count(dotMember))
err("Invalid call: "+printSimple(dotOwner)+"."+dotMember, m);
funId = aux.localExterns[as][dotMember];
sig = aux.localExternSigs[as][dotMember];
}
// Determine the funId and sig otherwise
else if (!as.size()) {
if (!aux.globalExterns.count(dotMember))
err("Invalid call: "+printSimple(dotOwner)+"."+dotMember, m);
std::string key = unsignedToDecimal(aux.globalExterns[dotMember]);
funId = aux.globalExterns[dotMember];
sig = aux.globalExternSigs[dotMember];
}
else err("Invalid call: "+printSimple(dotOwner)+"."+dotMember, m);
// Pack arguments
kwargs["data"] = packArguments(fnargs, sig, funId, m);
kwargs["to"] = dotOwner;
Node main;
// Pack output
if (!kwargs.count("outsz")) {
main = parseLLL(
"(with _data $data (seq "
"(pop (~"+op+" $gas $to $value (access _data 0) (access _data 1) (ref $dataout) 32))"
"(get $dataout)))");
}
else {
main = parseLLL(
"(with _data $data (with _outsz (mul 32 $outsz) (with _out (alloc _outsz) (seq "
"(pop (~"+op+" $gas $to $value (access _data 0) (access _data 1) _out _outsz))"
"(get _out)))))");
}
// Set up main call
Node o = subst(main, kwargs, prefix, m);
return o;
}
// Transform an access of the form self.bob, self.users[5], etc into
// a storage access
//
// There exist two types of objects: finite objects, and infinite
// objects. Finite objects are packed optimally tightly into storage
// accesses; for example:
//
// data obj[100](a, b[2][4], c)
//
// obj[0].a -> 0
// obj[0].b[0][0] -> 1
// obj[0].b[1][3] -> 8
// obj[45].c -> 459
//
// Infinite objects are accessed by sha3([v1, v2, v3 ... ]), where
// the values are a list of array indices and keyword indices, for
// example:
// data obj[](a, b[2][4], c)
// data obj2[](a, b[][], c)
//
// obj[0].a -> sha3([0, 0, 0])
// obj[5].b[1][3] -> sha3([0, 5, 1, 1, 3])
// obj[45].c -> sha3([0, 45, 2])
// obj2[0].a -> sha3([1, 0, 0])
// obj2[5].b[1][3] -> sha3([1, 5, 1, 1, 3])
// obj2[45].c -> sha3([1, 45, 2])
Node storageTransform(Node node, preprocessAux aux,
bool mapstyle=false, bool ref=false) {
Metadata m = node.metadata;
// Get a list of all of the "access parameters" used in order
// eg. self.users[5].cow[4][m[2]][woof] ->
// [--self, --users, 5, --cow, 4, m[2], woof]
std::vector<Node> hlist = listfyStorageAccess(node);
// For infinite arrays, the terms array will just provide a list
// of indices. For finite arrays, it's a list of index*coefficient
std::vector<Node> terms;
std::string offset = "0";
std::string prefix = "";
std::string varPrefix = "_temp"+mkUniqueToken()+"_";
int c = 0;
std::vector<std::string> coefficients;
coefficients.push_back("");
for (unsigned i = 1; i < hlist.size(); i++) {
// We pre-add the -- flag to parameter-like terms. For example,
// self.users[m] -> [--self, --users, m]
// self.users.m -> [--self, --users, --m]
if (hlist[i].val.substr(0, 2) == "--") {
prefix += hlist[i].val.substr(2) + ".";
std::string tempPrefix = prefix.substr(0, prefix.size()-1);
if (!aux.storageVars.offsets.count(tempPrefix))
return node;
if (c < (signed)coefficients.size() - 1)
err("Too few array index lookups", m);
if (c > (signed)coefficients.size() - 1)
err("Too many array index lookups", m);
coefficients = aux.storageVars.coefficients[tempPrefix];
// If the size of an object exceeds 2^176, we make it an infinite
// array
if (decimalGt(coefficients.back(), tt176) && !mapstyle)
return storageTransform(node, aux, true, ref);
offset = decimalAdd(offset, aux.storageVars.offsets[tempPrefix]);
c = 0;
if (mapstyle)
terms.push_back(token(unsignedToDecimal(
aux.storageVars.indices[tempPrefix])));
}
else if (mapstyle) {
terms.push_back(hlist[i]);
c += 1;
}
else {
if (c > (signed)coefficients.size() - 2)
err("Too many array index lookups", m);
terms.push_back(
astnode("mul",
hlist[i],
token(coefficients[coefficients.size() - 2 - c], m),
m));
c += 1;
}
}
if (aux.storageVars.nonfinal.count(prefix.substr(0, prefix.size()-1)))
err("Storage variable access not deep enough", m);
if (c < (signed)coefficients.size() - 1) {
err("Too few array index lookups", m);
}
if (c > (signed)coefficients.size() - 1) {
err("Too many array index lookups", m);
}
Node o;
if (mapstyle) {
std::string t = "_temp_"+mkUniqueToken();
std::vector<Node> sub;
for (unsigned i = 0; i < terms.size(); i++)
sub.push_back(asn("mstore",
asn("add",
tkn(utd(i * 32), m),
asn("get", tkn(t+"pos", m), m),
m),
terms[i],
m));
sub.push_back(tkn(t+"pos", m));
Node main = asn("with",
tkn(t+"pos", m),
asn("alloc", tkn(utd(terms.size() * 32), m), m),
asn("seq", sub, m),
m);
Node sz = token(utd(terms.size() * 32), m);
o = astnode("~sha3",
main,
sz,
m);
}
else {
// We add up all the index*coefficients
Node out = token(offset, node.metadata);
for (unsigned i = 0; i < terms.size(); i++) {
std::vector<Node> temp;
temp.push_back(out);
temp.push_back(terms[i]);
out = astnode("add", temp, node.metadata);
}
o = out;
}
if (ref) return o;
else return astnode("sload", o, node.metadata);
}
// Recursively applies rewrite rules
std::pair<Node, bool> apply_rules_iter(preprocessResult pr) {
bool changed = false;
Node node = pr.first;
// If the rewrite rules have not yet been parsed, parse them
if (!nodeMacros.size()) {
for (int i = 0; i < 9999; i++) {
std::vector<Node> o;
if (macros[i][0] == "---END---") break;
nodeMacros.push_back(rewriteRule(
parseLLL(macros[i][0]),
parseLLL(macros[i][1])
));
}
}
// Assignment transformations
for (int i = 0; i < 9999; i++) {
if (setters[i][0] == "---END---") break;
if (node.val == setters[i][0]) {
node = astnode("=",
node.args[0],
astnode(setters[i][1],
node.args[0],
node.args[1],
node.metadata),
node.metadata);
}
}
// Do nothing to macros
if (node.val == "macro") {
return std::pair<Node, bool>(node, changed);
}
// Ignore comments
if (node.val == "comment") {
return std::pair<Node, bool>(node, changed);
}
// Special storage transformation
if (isNodeStorageVariable(node)) {
node = storageTransform(node, pr.second);
changed = true;
}
if (node.val == "ref" && isNodeStorageVariable(node.args[0])) {
node = storageTransform(node.args[0], pr.second, false, true);
changed = true;
}
if (node.val == "=" && isNodeStorageVariable(node.args[0])) {
Node t = storageTransform(node.args[0], pr.second);
if (t.val == "sload") {
std::vector<Node> o;
o.push_back(t.args[0]);
o.push_back(node.args[1]);
node = astnode("sstore", o, node.metadata);
}
changed = true;
}
// Main code
unsigned pos = 0;
std::string prefix = "_temp"+mkUniqueToken()+"_";
while(1) {
if (synonyms[pos][0] == "---END---") {
break;
}
else if (node.type == ASTNODE && node.val == synonyms[pos][0]) {
node.val = synonyms[pos][1];
changed = true;
}
pos++;
}
for (pos = 0; pos < nodeMacros.size() + pr.second.customMacros.size(); pos++) {
rewriteRule macro = pos < nodeMacros.size()
? nodeMacros[pos]
: pr.second.customMacros[pos - nodeMacros.size()];
matchResult mr = match(macro.pattern, node);
if (mr.success) {
node = subst(macro.substitution, mr.map, prefix, node.metadata);
std::pair<Node, bool> o =
apply_rules_iter(preprocessResult(node, pr.second));
o.second = true;
return o;
}
}
// Special transformations
if (node.val == "outer") {
node = apply_rules(preprocess(node.args[0]));
changed = true;
}
if (node.val == "array_lit") {
node = array_lit_transform(node);
changed = true;
}
if (node.val == "fun" && node.args[0].val == ".") {
node = dotTransform(node, pr.second);
changed = true;
}
if (node.type == ASTNODE) {
unsigned i = 0;
if (node.val == "set" || node.val == "ref"
|| node.val == "get" || node.val == "with") {
if (node.args[0].val.size() > 0 && node.args[0].val[0] != '\''
&& node.args[0].type == TOKEN && node.args[0].val[0] != '$') {
node.args[0].val = "'" + node.args[0].val;
changed = true;
}
i = 1;
}
else if (node.val == "arglen") {
node.val = "get";
node.args[0].val = "'_len_" + node.args[0].val;
i = 1;
changed = true;
}
for (; i < node.args.size(); i++) {
std::pair<Node, bool> r =
apply_rules_iter(preprocessResult(node.args[i], pr.second));
node.args[i] = r.first;
changed = changed || r.second;
}
}
else if (node.type == TOKEN && !isNumberLike(node)) {
if (node.val.size() >= 2
&& node.val[0] == '"'
&& node.val[node.val.size() - 1] == '"') {
std::string bin = node.val.substr(1, node.val.size() - 2);
unsigned sz = bin.size();
std::vector<Node> o;
for (unsigned i = 0; i < sz; i += 32) {
std::string t = binToNumeric(bin.substr(i, 32));
if ((sz - i) < 32 && (sz - i) > 0) {
while ((sz - i) < 32) {
t = decimalMul(t, "256");
i--;
}
i = sz;
}
o.push_back(token(t, node.metadata));
}
node = astnode("array_lit", o, node.metadata);
std::pair<Node, bool> r =
apply_rules_iter(preprocessResult(node, pr.second));
node = r.first;
changed = true;
}
else if (node.val.size() && node.val[0] != '\'' && node.val[0] != '$') {
node.val = "'" + node.val;
std::vector<Node> args;
args.push_back(node);
std::string v = node.val.substr(1);
node = astnode("get", args, node.metadata);
changed = true;
}
}
return std::pair<Node, bool>(node, changed);
}
Node apply_rules(preprocessResult pr) {
for (unsigned i = 0; i < pr.second.customMacros.size(); i++) {
pr.second.customMacros[i].pattern =
apply_rules(preprocessResult(pr.second.customMacros[i].pattern, preprocessAux()));
}
while (1) {
//std::cerr << printAST(pr.first) <<
// " " << pr.second.customMacros.size() << "\n";
std::pair<Node, bool> r = apply_rules_iter(pr);
if (!r.second) {
return r.first;
}
pr.first = r.first;
}
}
Node validate(Node inp) {
Metadata m = inp.metadata;
if (inp.type == ASTNODE) {
int i = 0;
while(validFunctions[i][0] != "---END---") {
if (inp.val == validFunctions[i][0]) {
std::string sz = unsignedToDecimal(inp.args.size());
if (decimalGt(validFunctions[i][1], sz)) {
err("Too few arguments for "+inp.val, inp.metadata);
}
if (decimalGt(sz, validFunctions[i][2])) {
err("Too many arguments for "+inp.val, inp.metadata);
}
}
i++;
}
}
for (unsigned i = 0; i < inp.args.size(); i++) validate(inp.args[i]);
return inp;
}
Node postValidate(Node inp) {
// This allows people to use ~x as a way of having functions with the same
// name and arity as macros; the idea is that ~x is a "final" form, and
// should not be remacroed, but it is converted back at the end
if (inp.val.size() > 0 && inp.val[0] == '~') {
inp.val = inp.val.substr(1);
}
if (inp.type == ASTNODE) {
if (inp.val == ".")
err("Invalid object member (ie. a foo.bar not mapped to anything)",
inp.metadata);
else if (opcode(inp.val) >= 0) {
if ((signed)inp.args.size() < opinputs(inp.val))
err("Too few arguments for "+inp.val, inp.metadata);
if ((signed)inp.args.size() > opinputs(inp.val))
err("Too many arguments for "+inp.val, inp.metadata);
}
else if (isValidLLLFunc(inp.val, inp.args.size())) {
// do nothing
}
else err ("Invalid argument count or LLL function: "+inp.val, inp.metadata);
for (unsigned i = 0; i < inp.args.size(); i++) {
inp.args[i] = postValidate(inp.args[i]);
}
}
return inp;
}
Node rewrite(Node inp) {
return postValidate(optimize(apply_rules(preprocess(inp))));
}
Node rewriteChunk(Node inp) {
return postValidate(optimize(apply_rules(
preprocessResult(
validate(inp), preprocessAux()))));
}
using namespace std;

View File

@@ -0,0 +1,16 @@
#ifndef ETHSERP_REWRITER
#define ETHSERP_REWRITER
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// Applies rewrite rules
Node rewrite(Node inp);
// Applies rewrite rules adding without wrapper
Node rewriteChunk(Node inp);
#endif

View File

@@ -0,0 +1,211 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "lllparser.h"
#include "bignum.h"
#include "rewriteutils.h"
#include "optimize.h"
// Valid functions and their min and max argument counts
std::string validFunctions[][3] = {
{ "if", "2", "3" },
{ "unless", "2", "2" },
{ "while", "2", "2" },
{ "until", "2", "2" },
{ "alloc", "1", "1" },
{ "array", "1", "1" },
{ "call", "2", tt256 },
{ "callcode", "2", tt256 },
{ "create", "1", "4" },
{ "getch", "2", "2" },
{ "setch", "3", "3" },
{ "sha3", "1", "2" },
{ "return", "1", "2" },
{ "inset", "1", "1" },
{ "min", "2", "2" },
{ "max", "2", "2" },
{ "array_lit", "0", tt256 },
{ "seq", "0", tt256 },
{ "log", "1", "6" },
{ "outer", "1", "1" },
{ "set", "2", "2" },
{ "get", "1", "1" },
{ "ref", "1", "1" },
{ "declare", "1", tt256 },
{ "with", "3", "3" },
{ "outer", "1", "1" },
{ "mcopy", "3", "3" },
{ "unsafe_mcopy", "3", "3" },
{ "save", "3", "3" },
{ "load", "2", "2" },
{ "---END---", "", "" } //Keep this line at the end of the list
};
std::map<std::string, bool> vfMap;
// Is a function name one of the valid functions above?
bool isValidFunctionName(std::string f) {
if (vfMap.size() == 0) {
for (int i = 0; ; i++) {
if (validFunctions[i][0] == "---END---") break;
vfMap[validFunctions[i][0]] = true;
}
}
return vfMap.count(f);
}
// Cool function for debug purposes (named cerrStringList to make
// all prints searchable via 'cerr')
void cerrStringList(std::vector<std::string> s, std::string suffix) {
for (unsigned i = 0; i < s.size(); i++) std::cerr << s[i] << " ";
std::cerr << suffix << "\n";
}
// Convert:
// self.cow -> ["cow"]
// self.horse[0] -> ["horse", "0"]
// self.a[6][7][self.storage[3]].chicken[9] ->
// ["6", "7", (sload 3), "chicken", "9"]
std::vector<Node> listfyStorageAccess(Node node) {
std::vector<Node> out;
std::vector<Node> nodez;
nodez.push_back(node);
while (1) {
if (nodez.back().type == TOKEN) {
out.push_back(token("--" + nodez.back().val, node.metadata));
std::vector<Node> outrev;
for (int i = (signed)out.size() - 1; i >= 0; i--) {
outrev.push_back(out[i]);
}
return outrev;
}
if (nodez.back().val == ".")
nodez.back().args[1].val = "--" + nodez.back().args[1].val;
if (nodez.back().args.size() == 0)
err("Error parsing storage variable statement", node.metadata);
if (nodez.back().args.size() == 1)
out.push_back(token(tt256m1, node.metadata));
else
out.push_back(nodez.back().args[1]);
nodez.push_back(nodez.back().args[0]);
}
}
// Is the given node something of the form
// self.cow
// self.horse[0]
// self.a[6][7][self.storage[3]].chicken[9]
bool isNodeStorageVariable(Node node) {
std::vector<Node> nodez;
nodez.push_back(node);
while (1) {
if (nodez.back().type == TOKEN) return false;
if (nodez.back().args.size() == 0) return false;
if (nodez.back().val != "." && nodez.back().val != "access")
return false;
if (nodez.back().args[0].val == "self") return true;
nodez.push_back(nodez.back().args[0]);
}
}
// Main pattern matching routine, for those patterns that can be expressed
// using our standard mini-language above
//
// Returns two values. First, a boolean to determine whether the node matches
// the pattern, second, if the node does match then a map mapping variables
// in the pattern to nodes
matchResult match(Node p, Node n) {
matchResult o;
o.success = false;
if (p.type == TOKEN) {
if (p.val == n.val && n.type == TOKEN) o.success = true;
else if (p.val[0] == '$' || p.val[0] == '@') {
o.success = true;
o.map[p.val.substr(1)] = n;
}
}
else if (n.type==TOKEN || p.val!=n.val || p.args.size()!=n.args.size()) {
// do nothing
}
else {
for (unsigned i = 0; i < p.args.size(); i++) {
matchResult oPrime = match(p.args[i], n.args[i]);
if (!oPrime.success) {
o.success = false;
return o;
}
for (std::map<std::string, Node>::iterator it = oPrime.map.begin();
it != oPrime.map.end();
it++) {
o.map[(*it).first] = (*it).second;
}
}
o.success = true;
}
return o;
}
// Fills in the pattern with a dictionary mapping variable names to
// nodes (these dicts are generated by match). Match and subst together
// create a full pattern-matching engine.
Node subst(Node pattern,
std::map<std::string, Node> dict,
std::string varflag,
Metadata m) {
// Swap out patterns at the token level
if (pattern.metadata.ln == -1)
pattern.metadata = m;
if (pattern.type == TOKEN &&
pattern.val[0] == '$') {
if (dict.count(pattern.val.substr(1))) {
return dict[pattern.val.substr(1)];
}
else {
return token(varflag + pattern.val.substr(1), m);
}
}
// Other tokens are untouched
else if (pattern.type == TOKEN) {
return pattern;
}
// Substitute recursively for ASTs
else {
std::vector<Node> args;
for (unsigned i = 0; i < pattern.args.size(); i++) {
args.push_back(subst(pattern.args[i], dict, varflag, m));
}
return asn(pattern.val, args, m);
}
}
// Transforms a sequence containing two-argument with statements
// into a statement containing those statements in nested form
Node withTransform (Node source) {
Node o = token("--");
Metadata m = source.metadata;
std::vector<Node> args;
for (int i = source.args.size() - 1; i >= 0; i--) {
Node a = source.args[i];
if (a.val == "with" && a.args.size() == 2) {
std::vector<Node> flipargs;
for (int j = args.size() - 1; j >= 0; j--)
flipargs.push_back(args[i]);
if (o.val != "--")
flipargs.push_back(o);
o = asn("with", a.args[0], a.args[1], asn("seq", flipargs, m), m);
args = std::vector<Node>();
}
else {
args.push_back(a);
}
}
std::vector<Node> flipargs;
for (int j = args.size() - 1; j >= 0; j--)
flipargs.push_back(args[j]);
if (o.val != "--")
flipargs.push_back(o);
return asn("seq", flipargs, m);
}

View File

@@ -0,0 +1,51 @@
#ifndef ETHSERP_REWRITEUTILS
#define ETHSERP_REWRITEUTILS
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// Valid functions and their min and max argument counts
extern std::string validFunctions[][3];
extern std::map<std::string, bool> vfMap;
bool isValidFunctionName(std::string f);
// Converts deep array access into ordered list of the arguments
// along the descent
std::vector<Node> listfyStorageAccess(Node node);
// Cool function for debug purposes (named cerrStringList to make
// all prints searchable via 'cerr')
void cerrStringList(std::vector<std::string> s, std::string suffix="");
// Is the given node something of the form
// self.cow
// self.horse[0]
// self.a[6][7][self.storage[3]].chicken[9]
bool isNodeStorageVariable(Node node);
// Applies rewrite rules adding without wrapper
Node rewriteChunk(Node inp);
// Match result storing object
struct matchResult {
bool success;
std::map<std::string, Node> map;
};
// Match node to pattern
matchResult match(Node p, Node n);
// Substitute node using pattern
Node subst(Node pattern,
std::map<std::string, Node> dict,
std::string varflag,
Metadata m);
Node withTransform(Node source);
#endif

View File

@@ -0,0 +1,201 @@
import serpent_pyext as pyext
import sys
import re
VERSION = '1.7.7'
class Metadata(object):
def __init__(self, li):
self.file = li[0]
self.ln = li[1]
self.ch = li[2]
def out(self):
return [self.file, self.ln, self.ch]
class Token(object):
def __init__(self, val, metadata):
self.val = val
self.metadata = Metadata(metadata)
def out(self):
return [0, self.val, self.metadata.out()]
def __repr__(self):
return str(self.val)
class Astnode(object):
def __init__(self, val, args, metadata):
self.val = val
self.args = map(node, args)
self.metadata = Metadata(metadata)
def out(self):
o = [1, self.val, self.metadata.out()]+[x.out() for x in self.args]
return o
def __repr__(self):
o = '(' + self.val
subs = map(repr, self.args)
k = 0
out = " "
while k < len(subs) and o != "(seq":
if '\n' in subs[k] or len(out + subs[k]) >= 80:
break
out += subs[k] + " "
k += 1
if k < len(subs):
o += out + "\n "
o += '\n '.join('\n'.join(subs[k:]).split('\n'))
o += '\n)'
else:
o += out[:-1] + ')'
return o
def node(li):
if li[0]:
return Astnode(li[1], li[3:], li[2])
else:
return Token(li[1], li[2])
def take(x):
return pyext.parse_lll(x) if isinstance(x, (str, unicode)) else x.out()
def takelist(x):
return map(take, parse(x).args if isinstance(x, (str, unicode)) else x)
compile = lambda x: pyext.compile(x)
compile_chunk = lambda x: pyext.compile_chunk(x)
compile_to_lll = lambda x: node(pyext.compile_to_lll(x))
compile_chunk_to_lll = lambda x: node(pyext.compile_chunk_to_lll(x))
compile_lll = lambda x: pyext.compile_lll(take(x))
parse = lambda x: node(pyext.parse(x))
rewrite = lambda x: node(pyext.rewrite(take(x)))
rewrite_chunk = lambda x: node(pyext.rewrite_chunk(take(x)))
pretty_compile = lambda x: map(node, pyext.pretty_compile(x))
pretty_compile_chunk = lambda x: map(node, pyext.pretty_compile_chunk(x))
pretty_compile_lll = lambda x: map(node, pyext.pretty_compile_lll(take(x)))
serialize = lambda x: pyext.serialize(takelist(x))
deserialize = lambda x: map(node, pyext.deserialize(x))
is_numeric = lambda x: isinstance(x, (int, long))
is_string = lambda x: isinstance(x, (str, unicode))
tobytearr = lambda n, L: [] if L == 0 else tobytearr(n / 256, L - 1)+[n % 256]
# A set of methods for detecting raw values (numbers and strings) and
# converting them to integers
def frombytes(b):
return 0 if len(b) == 0 else ord(b[-1]) + 256 * frombytes(b[:-1])
def fromhex(b):
hexord = lambda x: '0123456789abcdef'.find(x)
return 0 if len(b) == 0 else hexord(b[-1]) + 16 * fromhex(b[:-1])
def numberize(b):
if is_numeric(b):
return b
elif b[0] in ["'", '"']:
return frombytes(b[1:-1])
elif b[:2] == '0x':
return fromhex(b[2:])
elif re.match('^[0-9]*$', b):
return int(b)
elif len(b) == 40:
return fromhex(b)
else:
raise Exception("Cannot identify data type: %r" % b)
def enc(n):
if is_numeric(n):
return ''.join(map(chr, tobytearr(n, 32)))
elif is_string(n) and len(n) == 40:
return '\x00' * 12 + n.decode('hex')
elif is_string(n):
return '\x00' * (32 - len(n)) + n
elif n is True:
return 1
elif n is False or n is None:
return 0
def encode_datalist(*args):
if isinstance(args, (tuple, list)):
return ''.join(map(enc, args))
elif not len(args) or args[0] == '':
return ''
else:
# Assume you're getting in numbers or addresses or 0x...
return ''.join(map(enc, map(numberize, args)))
def decode_datalist(arr):
if isinstance(arr, list):
arr = ''.join(map(chr, arr))
o = []
for i in range(0, len(arr), 32):
o.append(frombytes(arr[i:i + 32]))
return o
def encode_abi(funid, *args):
len_args = ''
normal_args = ''
var_args = ''
for arg in args:
if isinstance(arg, str) and len(arg) and \
arg[0] == '"' and arg[-1] == '"':
len_args += enc(numberize(len(arg[1:-1])))
var_args += arg[1:-1]
elif isinstance(arg, list):
for a in arg:
var_args += enc(numberize(a))
len_args += enc(numberize(len(arg)))
else:
normal_args += enc(numberize(arg))
return chr(int(funid)) + len_args + normal_args + var_args
def decode_abi(arr, *lens):
o = []
pos = 1
i = 0
if len(lens) == 1 and isinstance(lens[0], list):
lens = lens[0]
while pos < len(arr):
bytez = int(lens[i]) if i < len(lens) else 32
o.append(frombytes(arr[pos: pos + bytez]))
i, pos = i + 1, pos + bytez
return o
def main():
if len(sys.argv) == 1:
print "serpent <command> <arg1> <arg2> ..."
else:
cmd = sys.argv[2] if sys.argv[1] == '-s' else sys.argv[1]
if sys.argv[1] == '-s':
args = [sys.stdin.read()] + sys.argv[3:]
elif sys.argv[1] == '-v':
print VERSION
sys.exit()
else:
cmd = sys.argv[1]
args = sys.argv[2:]
if cmd in ['deserialize', 'decode_datalist', 'decode_abi']:
args[0] = args[0].strip().decode('hex')
o = globals()[cmd](*args)
if isinstance(o, (Token, Astnode, list)):
print repr(o)
else:
print o.encode('hex')

View File

@@ -0,0 +1,46 @@
from setuptools import setup, Extension
import os
from distutils.sysconfig import get_config_vars
(opt,) = get_config_vars('OPT')
os.environ['OPT'] = " ".join(
flag for flag in opt.split() if flag != '-Wstrict-prototypes'
)
setup(
# Name of this package
name="ethereum-serpent",
# Package version
version='1.7.7',
description='Serpent compiler',
maintainer='Vitalik Buterin',
maintainer_email='v@buterin.com',
license='WTFPL',
url='http://www.ethereum.org/',
# Describes how to build the actual extension module from C source files.
ext_modules=[
Extension(
'serpent_pyext', # Python name of the module
['bignum.cpp', 'util.cpp', 'tokenize.cpp',
'lllparser.cpp', 'parser.cpp', 'functions.cpp',
'optimize.cpp', 'opcodes.cpp',
'rewriteutils.cpp', 'preprocess.cpp', 'rewriter.cpp',
'compiler.cpp', 'funcs.cpp', 'pyserpent.cpp']
)],
py_modules=[
'serpent',
'pyserpent'
],
scripts=[
'serpent.py'
],
entry_points={
'console_scripts': [
'serpent = serpent:main',
],
}
),

View File

@@ -0,0 +1,115 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
// These appear as independent tokens even if inside a stream of symbols
const std::string atoms[] = { "#", "//", "(", ")", "[", "]", "{", "}" };
const int numAtoms = 8;
// Is the char alphanumeric, a space, a bracket, a quote, a symbol?
int chartype(char c) {
if (c >= '0' && c <= '9') return ALPHANUM;
else if (c >= 'a' && c <= 'z') return ALPHANUM;
else if (c >= 'A' && c <= 'Z') return ALPHANUM;
else if (std::string("~_$@").find(c) != std::string::npos) return ALPHANUM;
else if (c == '\t' || c == ' ' || c == '\n' || c == '\r') return SPACE;
else if (std::string("()[]{}").find(c) != std::string::npos) return BRACK;
else if (c == '"') return DQUOTE;
else if (c == '\'') return SQUOTE;
else return SYMB;
}
// "y = f(45,124)/3" -> [ "y", "f", "(", "45", ",", "124", ")", "/", "3"]
std::vector<Node> tokenize(std::string inp, Metadata metadata, bool lispMode) {
int curtype = SPACE;
unsigned pos = 0;
int lastNewline = 0;
metadata.ch = 0;
std::string cur;
std::vector<Node> out;
inp += " ";
while (pos < inp.length()) {
int headtype = chartype(inp[pos]);
if (lispMode) {
if (inp[pos] == '\'') headtype = ALPHANUM;
}
// Are we inside a quote?
if (curtype == SQUOTE || curtype == DQUOTE) {
// Close quote
if (headtype == curtype) {
cur += inp[pos];
out.push_back(token(cur, metadata));
cur = "";
metadata.ch = pos - lastNewline;
curtype = SPACE;
pos += 1;
}
// eg. \xc3
else if (inp.length() >= pos + 4 && inp.substr(pos, 2) == "\\x") {
cur += (std::string("0123456789abcdef").find(inp[pos+2]) * 16
+ std::string("0123456789abcdef").find(inp[pos+3]));
pos += 4;
}
// Newline
else if (inp.substr(pos, 2) == "\\n") {
cur += '\n';
pos += 2;
}
// Backslash escape
else if (inp.length() >= pos + 2 && inp[pos] == '\\') {
cur += inp[pos + 1];
pos += 2;
}
// Normal character
else {
cur += inp[pos];
pos += 1;
}
}
else {
// Handle atoms ( '//', '#', brackets )
for (int i = 0; i < numAtoms; i++) {
int split = cur.length() - atoms[i].length();
if (split >= 0 && cur.substr(split) == atoms[i]) {
if (split > 0) {
out.push_back(token(cur.substr(0, split), metadata));
}
metadata.ch += split;
out.push_back(token(cur.substr(split), metadata));
metadata.ch = pos - lastNewline;
cur = "";
curtype = SPACE;
}
}
// Special case the minus sign
if (cur.length() > 1 && (cur.substr(cur.length() - 1) == "-"
|| cur.substr(cur.length() - 1) == "!")) {
out.push_back(token(cur.substr(0, cur.length() - 1), metadata));
out.push_back(token(cur.substr(cur.length() - 1), metadata));
cur = "";
}
// Boundary between different char types
if (headtype != curtype) {
if (curtype != SPACE && cur != "") {
out.push_back(token(cur, metadata));
}
metadata.ch = pos - lastNewline;
cur = "";
}
cur += inp[pos];
curtype = headtype;
pos += 1;
}
if (inp[pos] == '\n') {
lastNewline = pos;
metadata.ch = 0;
metadata.ln += 1;
}
}
return out;
}

View File

@@ -0,0 +1,16 @@
#ifndef ETHSERP_TOKENIZE
#define ETHSERP_TOKENIZE
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
int chartype(char c);
std::vector<Node> tokenize(std::string inp,
Metadata meta=Metadata(),
bool lispMode=false);
#endif

View File

@@ -0,0 +1,305 @@
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include "util.h"
#include "bignum.h"
#include <fstream>
#include <cerrno>
//Token or value node constructor
Node token(std::string val, Metadata met) {
Node o;
o.type = 0;
o.val = val;
o.metadata = met;
return o;
}
//AST node constructor
Node astnode(std::string val, std::vector<Node> args, Metadata met) {
Node o;
o.type = 1;
o.val = val;
o.args = args;
o.metadata = met;
return o;
}
//AST node constructors for a specific number of children
Node astnode(std::string val, Metadata met) {
std::vector<Node> args;
return astnode(val, args, met);
}
Node astnode(std::string val, Node a, Metadata met) {
std::vector<Node> args;
args.push_back(a);
return astnode(val, args, met);
}
Node astnode(std::string val, Node a, Node b, Metadata met) {
std::vector<Node> args;
args.push_back(a);
args.push_back(b);
return astnode(val, args, met);
}
Node astnode(std::string val, Node a, Node b, Node c, Metadata met) {
std::vector<Node> args;
args.push_back(a);
args.push_back(b);
args.push_back(c);
return astnode(val, args, met);
}
Node astnode(std::string val, Node a, Node b, Node c, Node d, Metadata met) {
std::vector<Node> args;
args.push_back(a);
args.push_back(b);
args.push_back(c);
args.push_back(d);
return astnode(val, args, met);
}
// Print token list
std::string printTokens(std::vector<Node> tokens) {
std::string s = "";
for (unsigned i = 0; i < tokens.size(); i++) {
s += tokens[i].val + " ";
}
return s;
}
// Prints a lisp AST on one line
std::string printSimple(Node ast) {
if (ast.type == TOKEN) return ast.val;
std::string o = "(" + ast.val;
std::vector<std::string> subs;
for (unsigned i = 0; i < ast.args.size(); i++) {
o += " " + printSimple(ast.args[i]);
}
return o + ")";
}
// Number of tokens in a tree
int treeSize(Node prog) {
if (prog.type == TOKEN) return 1;
int o = 0;
for (unsigned i = 0; i < prog.args.size(); i++) o += treeSize(prog.args[i]);
return o;
}
// Pretty-prints a lisp AST
std::string printAST(Node ast, bool printMetadata) {
if (ast.type == TOKEN) return ast.val;
std::string o = "(";
if (printMetadata) {
o += ast.metadata.file + " ";
o += unsignedToDecimal(ast.metadata.ln) + " ";
o += unsignedToDecimal(ast.metadata.ch) + ": ";
}
o += ast.val;
std::vector<std::string> subs;
for (unsigned i = 0; i < ast.args.size(); i++) {
subs.push_back(printAST(ast.args[i], printMetadata));
}
unsigned k = 0;
std::string out = " ";
// As many arguments as possible go on the same line as the function,
// except when seq is used
while (k < subs.size() && o != "(seq") {
if (subs[k].find("\n") != std::string::npos || (out + subs[k]).length() >= 80) break;
out += subs[k] + " ";
k += 1;
}
// All remaining arguments go on their own lines
if (k < subs.size()) {
o += out + "\n";
std::vector<std::string> subsSliceK;
for (unsigned i = k; i < subs.size(); i++) subsSliceK.push_back(subs[i]);
o += indentLines(joinLines(subsSliceK));
o += "\n)";
}
else {
o += out.substr(0, out.size() - 1) + ")";
}
return o;
}
// Splits text by line
std::vector<std::string> splitLines(std::string s) {
unsigned pos = 0;
int lastNewline = 0;
std::vector<std::string> o;
while (pos < s.length()) {
if (s[pos] == '\n') {
o.push_back(s.substr(lastNewline, pos - lastNewline));
lastNewline = pos + 1;
}
pos = pos + 1;
}
o.push_back(s.substr(lastNewline));
return o;
}
// Inverse of splitLines
std::string joinLines(std::vector<std::string> lines) {
std::string o = "\n";
for (unsigned i = 0; i < lines.size(); i++) {
o += lines[i] + "\n";
}
return o.substr(1, o.length() - 2);
}
// Indent all lines by 4 spaces
std::string indentLines(std::string inp) {
std::vector<std::string> lines = splitLines(inp);
for (unsigned i = 0; i < lines.size(); i++) lines[i] = " "+lines[i];
return joinLines(lines);
}
// Binary to hexadecimal
std::string binToNumeric(std::string inp) {
std::string o = "0";
for (unsigned i = 0; i < inp.length(); i++) {
o = decimalAdd(decimalMul(o,"256"), unsignedToDecimal((unsigned char)inp[i]));
}
return o;
}
// Converts string to simple numeric format
std::string strToNumeric(std::string inp) {
std::string o = "0";
if (inp == "") {
o = "";
}
else if (inp.substr(0,2) == "0x") {
for (unsigned i = 2; i < inp.length(); i++) {
int dig = std::string("0123456789abcdef0123456789ABCDEF").find(inp[i]) % 16;
if (dig < 0) return "";
o = decimalAdd(decimalMul(o,"16"), unsignedToDecimal(dig));
}
}
else {
bool isPureNum = true;
for (unsigned i = 0; i < inp.length(); i++) {
isPureNum = isPureNum && inp[i] >= '0' && inp[i] <= '9';
}
o = isPureNum ? inp : "";
}
return o;
}
// Does the node contain a number (eg. 124, 0xf012c, "george")
bool isNumberLike(Node node) {
if (node.type == ASTNODE) return false;
return strToNumeric(node.val) != "";
}
//Normalizes number representations
Node nodeToNumeric(Node node) {
std::string o = strToNumeric(node.val);
return token(o == "" ? node.val : o, node.metadata);
}
Node tryNumberize(Node node) {
if (node.type == TOKEN && isNumberLike(node)) return nodeToNumeric(node);
return node;
}
//Converts a value to an array of byte number nodes
std::vector<Node> toByteArr(std::string val, Metadata metadata, int minLen) {
std::vector<Node> o;
int L = 0;
while (val != "0" || L < minLen) {
o.push_back(token(decimalMod(val, "256"), metadata));
val = decimalDiv(val, "256");
L++;
}
std::vector<Node> o2;
for (int i = o.size() - 1; i >= 0; i--) o2.push_back(o[i]);
return o2;
}
int counter = 0;
//Makes a unique token
std::string mkUniqueToken() {
counter++;
return unsignedToDecimal(counter);
}
//Does a file exist? http://stackoverflow.com/questions/12774207
bool exists(std::string fileName) {
std::ifstream infile(fileName.c_str());
return infile.good();
}
//Reads a file: http://stackoverflow.com/questions/2602013
std::string get_file_contents(std::string filename)
{
std::ifstream in(filename.c_str(), std::ios::in | std::ios::binary);
if (in)
{
std::string contents;
in.seekg(0, std::ios::end);
contents.resize(in.tellg());
in.seekg(0, std::ios::beg);
in.read(&contents[0], contents.size());
in.close();
return(contents);
}
throw(errno);
}
//Report error
void err(std::string errtext, Metadata met) {
std::string err = "Error (file \"" + met.file + "\", line " +
unsignedToDecimal(met.ln + 1) + ", char " + unsignedToDecimal(met.ch) +
"): " + errtext;
std::cerr << err << "\n";
throw(err);
}
//Bin to hex
std::string binToHex(std::string inp) {
std::string o = "";
for (unsigned i = 0; i < inp.length(); i++) {
unsigned char v = inp[i];
o += std::string("0123456789abcdef").substr(v/16, 1)
+ std::string("0123456789abcdef").substr(v%16, 1);
}
return o;
}
//Hex to bin
std::string hexToBin(std::string inp) {
std::string o = "";
for (unsigned i = 0; i+1 < inp.length(); i+=2) {
char v = (char)(std::string("0123456789abcdef").find(inp[i]) * 16 +
std::string("0123456789abcdef").find(inp[i+1]));
o += v;
}
return o;
}
//Lower to upper
std::string upperCase(std::string inp) {
std::string o = "";
for (unsigned i = 0; i < inp.length(); i++) {
if (inp[i] >= 97 && inp[i] <= 122) o += inp[i] - 32;
else o += inp[i];
}
return o;
}
//Three-int vector
std::vector<int> triple(int a, int b, int c) {
std::vector<int> v;
v.push_back(a);
v.push_back(b);
v.push_back(c);
return v;
}

View File

@@ -0,0 +1,127 @@
#ifndef ETHSERP_UTIL
#define ETHSERP_UTIL
#include <stdio.h>
#include <iostream>
#include <vector>
#include <map>
#include <fstream>
#include <cerrno>
const int TOKEN = 0,
ASTNODE = 1,
SPACE = 2,
BRACK = 3,
SQUOTE = 4,
DQUOTE = 5,
SYMB = 6,
ALPHANUM = 7,
LPAREN = 8,
RPAREN = 9,
COMMA = 10,
COLON = 11,
UNARY_OP = 12,
BINARY_OP = 13,
COMPOUND = 14,
TOKEN_SPLITTER = 15;
// Stores metadata about each token
class Metadata {
public:
Metadata(std::string File="main", int Ln=-1, int Ch=-1) {
file = File;
ln = Ln;
ch = Ch;
fixed = false;
}
std::string file;
int ln;
int ch;
bool fixed;
};
std::string mkUniqueToken();
// type can be TOKEN or ASTNODE
struct Node {
int type;
std::string val;
std::vector<Node> args;
Metadata metadata;
};
Node token(std::string val, Metadata met=Metadata());
Node astnode(std::string val, std::vector<Node> args, Metadata met=Metadata());
Node astnode(std::string val, Metadata met=Metadata());
Node astnode(std::string val, Node a, Metadata met=Metadata());
Node astnode(std::string val, Node a, Node b, Metadata met=Metadata());
Node astnode(std::string val, Node a, Node b, Node c, Metadata met=Metadata());
Node astnode(std::string val, Node a, Node b,
Node c, Node d, Metadata met=Metadata());
// Number of tokens in a tree
int treeSize(Node prog);
// Print token list
std::string printTokens(std::vector<Node> tokens);
// Prints a lisp AST on one line
std::string printSimple(Node ast);
// Pretty-prints a lisp AST
std::string printAST(Node ast, bool printMetadata=false);
// Splits text by line
std::vector<std::string> splitLines(std::string s);
// Inverse of splitLines
std::string joinLines(std::vector<std::string> lines);
// Indent all lines by 4 spaces
std::string indentLines(std::string inp);
// Converts binary to simple numeric format
std::string binToNumeric(std::string inp);
// Converts string to simple numeric format
std::string strToNumeric(std::string inp);
// Does the node contain a number (eg. 124, 0xf012c, "george")
bool isNumberLike(Node node);
//Normalizes number representations
Node nodeToNumeric(Node node);
//If a node is numeric, normalize its representation
Node tryNumberize(Node node);
//Converts a value to an array of byte number nodes
std::vector<Node> toByteArr(std::string val, Metadata metadata, int minLen=1);
//Reads a file
std::string get_file_contents(std::string filename);
//Does a file exist?
bool exists(std::string fileName);
//Report error
void err(std::string errtext, Metadata met);
//Bin to hex
std::string binToHex(std::string inp);
//Hex to bin
std::string hexToBin(std::string inp);
//Lower to upper
std::string upperCase(std::string inp);
//Three-int vector
std::vector<int> triple(int a, int b, int c);
#define asn astnode
#define tkn token
#define msi std::map<std::string, int>
#define msn std::map<std::string, Node>
#define mss std::map<std::string, std::string>
#endif

View File

@@ -0,0 +1,21 @@
package main
import (
"fmt"
"github.com/ethereum/serpent-go"
)
func main() {
out, _ := serpent.Compile(`
// Namecoin
if !contract.storage[msg.data[0]]: # Is the key not yet taken?
# Then take it!
contract.storage[msg.data[0]] = msg.data[1]
return(1)
else:
return(0) // Otherwise do nothing
`)
fmt.Printf("%x\n", out)
}

23
Godeps/_workspace/src/github.com/fjl/goupnp/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,23 @@
Copyright (c) 2013, John Beisley <greatred@gmail.com>
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

14
Godeps/_workspace/src/github.com/fjl/goupnp/README.md generated vendored Normal file
View File

@@ -0,0 +1,14 @@
goupnp is a UPnP client library for Go
Installation
------------
Run `go get -u github.com/fjl/goupnp`.
Regenerating dcps generated source code:
----------------------------------------
1. Install gotasks: `go get -u github.com/jingweno/gotask`
2. Change to the gotasks directory: `cd gotasks`
3. Download UPnP specification data (if not done already): `wget http://upnp.org/resources/upnpresources.zip`
4. Regenerate source code: `gotask specgen -s upnpresources.zip -o ../dcps`

View File

@@ -0,0 +1,20 @@
package main
import (
"log"
"net/http"
"github.com/fjl/goupnp/httpu"
)
func main() {
srv := httpu.Server{
Addr: "239.255.255.250:1900",
Multicast: true,
Handler: httpu.HandlerFunc(func(r *http.Request) {
log.Printf("Got %s %s message from %v: %v", r.Method, r.URL.Path, r.RemoteAddr, r.Header)
}),
}
err := srv.ListenAndServe()
log.Printf("Serving failed with error: %v", err)
}

View File

@@ -0,0 +1,67 @@
package main
import (
"fmt"
"log"
"github.com/fjl/goupnp/dcps/internetgateway1"
)
func main() {
clients, errors, err := internetgateway1.NewWANPPPConnection1Clients()
if err != nil {
log.Fatal(err)
}
fmt.Printf("Got %d errors finding servers and %d successfully discovered.\n",
len(errors), len(clients))
for i, e := range errors {
fmt.Printf("Error finding server #%d: %v\n", i+1, e)
}
for _, c := range clients {
dev := &c.ServiceClient.RootDevice.Device
srv := c.ServiceClient.Service
fmt.Println(dev.FriendlyName, " :: ", srv.String())
scpd, err := srv.RequestSCDP()
if err != nil {
fmt.Printf(" Error requesting service SCPD: %v\n", err)
} else {
fmt.Println(" Available actions:")
for _, action := range scpd.Actions {
fmt.Printf(" * %s\n", action.Name)
for _, arg := range action.Arguments {
var varDesc string
if stateVar := scpd.GetStateVariable(arg.RelatedStateVariable); stateVar != nil {
varDesc = fmt.Sprintf(" (%s)", stateVar.DataType.Name)
}
fmt.Printf(" * [%s] %s%s\n", arg.Direction, arg.Name, varDesc)
}
}
}
if scpd == nil || scpd.GetAction("GetExternalIPAddress") != nil {
ip, err := c.GetExternalIPAddress()
fmt.Println("GetExternalIPAddress: ", ip, err)
}
if scpd == nil || scpd.GetAction("GetStatusInfo") != nil {
status, lastErr, uptime, err := c.GetStatusInfo()
fmt.Println("GetStatusInfo: ", status, lastErr, uptime, err)
}
if scpd == nil || scpd.GetAction("GetIdleDisconnectTime") != nil {
idleTime, err := c.GetIdleDisconnectTime()
fmt.Println("GetIdleDisconnectTime: ", idleTime, err)
}
if scpd == nil || scpd.GetAction("AddPortMapping") != nil {
err := c.AddPortMapping("", 5000, "TCP", 5001, "192.168.1.2", true, "Test port mapping", 0)
fmt.Println("AddPortMapping: ", err)
}
if scpd == nil || scpd.GetAction("DeletePortMapping") != nil {
err := c.DeletePortMapping("", 5000, "TCP")
fmt.Println("DeletePortMapping: ", err)
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

184
Godeps/_workspace/src/github.com/fjl/goupnp/device.go generated vendored Normal file
View File

@@ -0,0 +1,184 @@
// This file contains XML structures for communicating with UPnP devices.
package goupnp
import (
"encoding/xml"
"errors"
"fmt"
"net/url"
"github.com/fjl/goupnp/scpd"
"github.com/fjl/goupnp/soap"
)
const (
DeviceXMLNamespace = "urn:schemas-upnp-org:device-1-0"
)
// RootDevice is the device description as described by section 2.3 "Device
// description" in
// http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
type RootDevice struct {
XMLName xml.Name `xml:"root"`
SpecVersion SpecVersion `xml:"specVersion"`
URLBase url.URL `xml:"-"`
URLBaseStr string `xml:"URLBase"`
Device Device `xml:"device"`
}
// SetURLBase sets the URLBase for the RootDevice and its underlying components.
func (root *RootDevice) SetURLBase(urlBase *url.URL) {
root.URLBase = *urlBase
root.URLBaseStr = urlBase.String()
root.Device.SetURLBase(urlBase)
}
// SpecVersion is part of a RootDevice, describes the version of the
// specification that the data adheres to.
type SpecVersion struct {
Major int32 `xml:"major"`
Minor int32 `xml:"minor"`
}
// Device is a UPnP device. It can have child devices.
type Device struct {
DeviceType string `xml:"deviceType"`
FriendlyName string `xml:"friendlyName"`
Manufacturer string `xml:"manufacturer"`
ManufacturerURL URLField `xml:"manufacturerURL"`
ModelDescription string `xml:"modelDescription"`
ModelName string `xml:"modelName"`
ModelNumber string `xml:"modelNumber"`
ModelURL URLField `xml:"modelURL"`
SerialNumber string `xml:"serialNumber"`
UDN string `xml:"UDN"`
UPC string `xml:"UPC,omitempty"`
Icons []Icon `xml:"iconList>icon,omitempty"`
Services []Service `xml:"serviceList>service,omitempty"`
Devices []Device `xml:"deviceList>device,omitempty"`
// Extra observed elements:
PresentationURL URLField `xml:"presentationURL"`
}
// VisitDevices calls visitor for the device, and all its descendent devices.
func (device *Device) VisitDevices(visitor func(*Device)) {
visitor(device)
for i := range device.Devices {
device.Devices[i].VisitDevices(visitor)
}
}
// VisitServices calls visitor for all Services under the device and all its
// descendent devices.
func (device *Device) VisitServices(visitor func(*Service)) {
device.VisitDevices(func(d *Device) {
for i := range d.Services {
visitor(&d.Services[i])
}
})
}
// FindService finds all (if any) Services under the device and its descendents
// that have the given ServiceType.
func (device *Device) FindService(serviceType string) []*Service {
var services []*Service
device.VisitServices(func(s *Service) {
if s.ServiceType == serviceType {
services = append(services, s)
}
})
return services
}
// SetURLBase sets the URLBase for the Device and its underlying components.
func (device *Device) SetURLBase(urlBase *url.URL) {
device.ManufacturerURL.SetURLBase(urlBase)
device.ModelURL.SetURLBase(urlBase)
device.PresentationURL.SetURLBase(urlBase)
for i := range device.Icons {
device.Icons[i].SetURLBase(urlBase)
}
for i := range device.Services {
device.Services[i].SetURLBase(urlBase)
}
for i := range device.Devices {
device.Devices[i].SetURLBase(urlBase)
}
}
func (device *Device) String() string {
return fmt.Sprintf("Device ID %s : %s (%s)", device.UDN, device.DeviceType, device.FriendlyName)
}
// Icon is a representative image that a device might include in its
// description.
type Icon struct {
Mimetype string `xml:"mimetype"`
Width int32 `xml:"width"`
Height int32 `xml:"height"`
Depth int32 `xml:"depth"`
URL URLField `xml:"url"`
}
// SetURLBase sets the URLBase for the Icon.
func (icon *Icon) SetURLBase(url *url.URL) {
icon.URL.SetURLBase(url)
}
// Service is a service provided by a UPnP Device.
type Service struct {
ServiceType string `xml:"serviceType"`
ServiceId string `xml:"serviceId"`
SCPDURL URLField `xml:"SCPDURL"`
ControlURL URLField `xml:"controlURL"`
EventSubURL URLField `xml:"eventSubURL"`
}
// SetURLBase sets the URLBase for the Service.
func (srv *Service) SetURLBase(urlBase *url.URL) {
srv.SCPDURL.SetURLBase(urlBase)
srv.ControlURL.SetURLBase(urlBase)
srv.EventSubURL.SetURLBase(urlBase)
}
func (srv *Service) String() string {
return fmt.Sprintf("Service ID %s : %s", srv.ServiceId, srv.ServiceType)
}
// RequestSCDP requests the SCPD (soap actions and state variables description)
// for the service.
func (srv *Service) RequestSCDP() (*scpd.SCPD, error) {
if !srv.SCPDURL.Ok {
return nil, errors.New("bad/missing SCPD URL, or no URLBase has been set")
}
s := new(scpd.SCPD)
if err := requestXml(srv.SCPDURL.URL.String(), scpd.SCPDXMLNamespace, s); err != nil {
return nil, err
}
return s, nil
}
func (srv *Service) NewSOAPClient() *soap.SOAPClient {
return soap.NewSOAPClient(srv.ControlURL.URL)
}
// URLField is a URL that is part of a device description.
type URLField struct {
URL url.URL `xml:"-"`
Ok bool `xml:"-"`
Str string `xml:",chardata"`
}
func (uf *URLField) SetURLBase(urlBase *url.URL) {
refUrl, err := url.Parse(uf.Str)
if err != nil {
uf.URL = url.URL{}
uf.Ok = false
return
}
uf.URL = *urlBase.ResolveReference(refUrl)
uf.Ok = true
}

View File

@@ -0,0 +1,6 @@
// Serves as examples of using the goupnp library.
//
// To run examples and see the output for your local network, run the following
// command (specifically including the -v flag):
// go test -v github.com/fjl/goupnp/example
package example

View File

@@ -0,0 +1,62 @@
package example_test
import (
"fmt"
"os"
"github.com/fjl/goupnp"
"github.com/fjl/goupnp/dcps/internetgateway1"
)
// Use discovered WANPPPConnection1 services to find external IP addresses.
func Example_WANPPPConnection1_GetExternalIPAddress() {
clients, errors, err := internetgateway1.NewWANPPPConnection1Clients()
extIPClients := make([]GetExternalIPAddresser, len(clients))
for i, client := range clients {
extIPClients[i] = client
}
DisplayExternalIPResults(extIPClients, errors, err)
// Output:
}
// Use discovered WANIPConnection services to find external IP addresses.
func Example_WANIPConnection_GetExternalIPAddress() {
clients, errors, err := internetgateway1.NewWANIPConnection1Clients()
extIPClients := make([]GetExternalIPAddresser, len(clients))
for i, client := range clients {
extIPClients[i] = client
}
DisplayExternalIPResults(extIPClients, errors, err)
// Output:
}
type GetExternalIPAddresser interface {
GetExternalIPAddress() (NewExternalIPAddress string, err error)
GetServiceClient() *goupnp.ServiceClient
}
func DisplayExternalIPResults(clients []GetExternalIPAddresser, errors []error, err error) {
if err != nil {
fmt.Fprintln(os.Stderr, "Error discovering service with UPnP: ", err)
return
}
if len(errors) > 0 {
fmt.Fprintf(os.Stderr, "Error discovering %d services:\n", len(errors))
for _, err := range errors {
fmt.Println(" ", err)
}
}
fmt.Fprintf(os.Stderr, "Successfully discovered %d services:\n", len(clients))
for _, client := range clients {
device := &client.GetServiceClient().RootDevice.Device
fmt.Fprintln(os.Stderr, " Device:", device.FriendlyName)
if addr, err := client.GetExternalIPAddress(); err != nil {
fmt.Fprintf(os.Stderr, " Failed to get external IP address: %v\n", err)
} else {
fmt.Fprintf(os.Stderr, " External IP address: %v\n", addr)
}
}
}

View File

@@ -0,0 +1,539 @@
// +build gotask
package gotasks
import (
"archive/zip"
"bytes"
"encoding/xml"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"path"
"path/filepath"
"regexp"
"strings"
"text/template"
"github.com/fjl/goupnp"
"github.com/fjl/goupnp/scpd"
"github.com/huin/goutil/codegen"
"github.com/jingweno/gotask/tasking"
)
var (
deviceURNPrefix = "urn:schemas-upnp-org:device:"
serviceURNPrefix = "urn:schemas-upnp-org:service:"
)
// NAME
// specgen - generates Go code from the UPnP specification files.
//
// DESCRIPTION
// The specification is available for download from:
//
// OPTIONS
// -s, --spec_filename=<upnpresources.zip>
// Path to the specification file, available from http://upnp.org/resources/upnpresources.zip
// -o, --out_dir=<output directory>
// Path to the output directory. This is is where the DCP source files will be placed. Should normally correspond to the directory for github.com/fjl/goupnp/dcps
// --nogofmt
// Disable passing the output through gofmt. Do this if debugging code output problems and needing to see the generated code prior to being passed through gofmt.
func TaskSpecgen(t *tasking.T) {
specFilename := t.Flags.String("spec-filename")
if specFilename == "" {
specFilename = t.Flags.String("s")
}
if specFilename == "" {
t.Fatal("--spec_filename is required")
}
outDir := t.Flags.String("out-dir")
if outDir == "" {
outDir = t.Flags.String("o")
}
if outDir == "" {
log.Fatal("--out_dir is required")
}
useGofmt := !t.Flags.Bool("nogofmt")
specArchive, err := openZipfile(specFilename)
if err != nil {
t.Fatalf("Error opening spec file: %v", err)
}
defer specArchive.Close()
dcpCol := newDcpsCollection()
for _, f := range globFiles("standardizeddcps/*/*.zip", specArchive.Reader) {
dirName := strings.TrimPrefix(f.Name, "standardizeddcps/")
slashIndex := strings.Index(dirName, "/")
if slashIndex == -1 {
// Should not happen.
t.Logf("Could not find / in %q", dirName)
return
}
dirName = dirName[:slashIndex]
dcp := dcpCol.dcpForDir(dirName)
if dcp == nil {
t.Logf("No alias defined for directory %q: skipping %s\n", dirName, f.Name)
continue
} else {
t.Logf("Alias found for directory %q: processing %s\n", dirName, f.Name)
}
dcp.processZipFile(f)
}
for _, dcp := range dcpCol.dcpByAlias {
if err := dcp.writePackage(outDir, useGofmt); err != nil {
log.Printf("Error writing package %q: %v", dcp.Metadata.Name, err)
}
}
}
// DCP contains extra metadata to use when generating DCP source files.
type DCPMetadata struct {
Name string // What to name the Go DCP package.
OfficialName string // Official name for the DCP.
DocURL string // Optional - URL for futher documentation about the DCP.
}
var dcpMetadataByDir = map[string]DCPMetadata{
"Internet Gateway_1": {
Name: "internetgateway1",
OfficialName: "Internet Gateway Device v1",
DocURL: "http://upnp.org/specs/gw/UPnP-gw-InternetGatewayDevice-v1-Device.pdf",
},
"Internet Gateway_2": {
Name: "internetgateway2",
OfficialName: "Internet Gateway Device v2",
DocURL: "http://upnp.org/specs/gw/UPnP-gw-InternetGatewayDevice-v2-Device.pdf",
},
}
type dcpCollection struct {
dcpByAlias map[string]*DCP
}
func newDcpsCollection() *dcpCollection {
c := &dcpCollection{
dcpByAlias: make(map[string]*DCP),
}
for _, metadata := range dcpMetadataByDir {
c.dcpByAlias[metadata.Name] = newDCP(metadata)
}
return c
}
func (c *dcpCollection) dcpForDir(dirName string) *DCP {
metadata, ok := dcpMetadataByDir[dirName]
if !ok {
return nil
}
return c.dcpByAlias[metadata.Name]
}
// DCP collects together information about a UPnP Device Control Protocol.
type DCP struct {
Metadata DCPMetadata
DeviceTypes map[string]*URNParts
ServiceTypes map[string]*URNParts
Services []SCPDWithURN
}
func newDCP(metadata DCPMetadata) *DCP {
return &DCP{
Metadata: metadata,
DeviceTypes: make(map[string]*URNParts),
ServiceTypes: make(map[string]*URNParts),
}
}
func (dcp *DCP) processZipFile(file *zip.File) {
archive, err := openChildZip(file)
if err != nil {
log.Println("Error reading child zip file:", err)
return
}
for _, deviceFile := range globFiles("*/device/*.xml", archive) {
dcp.processDeviceFile(deviceFile)
}
for _, scpdFile := range globFiles("*/service/*.xml", archive) {
dcp.processSCPDFile(scpdFile)
}
}
func (dcp *DCP) processDeviceFile(file *zip.File) {
var device goupnp.Device
if err := unmarshalXmlFile(file, &device); err != nil {
log.Printf("Error decoding device XML from file %q: %v", file.Name, err)
return
}
device.VisitDevices(func(d *goupnp.Device) {
t := strings.TrimSpace(d.DeviceType)
if t != "" {
u, err := extractURNParts(t, deviceURNPrefix)
if err != nil {
log.Println(err)
return
}
dcp.DeviceTypes[t] = u
}
})
device.VisitServices(func(s *goupnp.Service) {
u, err := extractURNParts(s.ServiceType, serviceURNPrefix)
if err != nil {
log.Println(err)
return
}
dcp.ServiceTypes[s.ServiceType] = u
})
}
func (dcp *DCP) writePackage(outDir string, useGofmt bool) error {
packageDirname := filepath.Join(outDir, dcp.Metadata.Name)
err := os.MkdirAll(packageDirname, os.ModePerm)
if err != nil && !os.IsExist(err) {
return err
}
packageFilename := filepath.Join(packageDirname, dcp.Metadata.Name+".go")
packageFile, err := os.Create(packageFilename)
if err != nil {
return err
}
var output io.WriteCloser = packageFile
if useGofmt {
if output, err = codegen.NewGofmtWriteCloser(output); err != nil {
packageFile.Close()
return err
}
}
if err = packageTmpl.Execute(output, dcp); err != nil {
output.Close()
return err
}
return output.Close()
}
func (dcp *DCP) processSCPDFile(file *zip.File) {
scpd := new(scpd.SCPD)
if err := unmarshalXmlFile(file, scpd); err != nil {
log.Printf("Error decoding SCPD XML from file %q: %v", file.Name, err)
return
}
scpd.Clean()
urnParts, err := urnPartsFromSCPDFilename(file.Name)
if err != nil {
log.Printf("Could not recognize SCPD filename %q: %v", file.Name, err)
return
}
dcp.Services = append(dcp.Services, SCPDWithURN{
URNParts: urnParts,
SCPD: scpd,
})
}
type SCPDWithURN struct {
*URNParts
SCPD *scpd.SCPD
}
func (s *SCPDWithURN) WrapArgument(arg scpd.Argument) (*argumentWrapper, error) {
relVar := s.SCPD.GetStateVariable(arg.RelatedStateVariable)
if relVar == nil {
return nil, fmt.Errorf("no such state variable: %q, for argument %q", arg.RelatedStateVariable, arg.Name)
}
cnv, ok := typeConvs[relVar.DataType.Name]
if !ok {
return nil, fmt.Errorf("unknown data type: %q, for state variable %q, for argument %q", relVar.DataType.Type, arg.RelatedStateVariable, arg.Name)
}
return &argumentWrapper{
Argument: arg,
relVar: relVar,
conv: cnv,
}, nil
}
type argumentWrapper struct {
scpd.Argument
relVar *scpd.StateVariable
conv conv
}
func (arg *argumentWrapper) AsParameter() string {
return fmt.Sprintf("%s %s", arg.Name, arg.conv.ExtType)
}
func (arg *argumentWrapper) Document() string {
relVar := arg.relVar
if rng := relVar.AllowedValueRange; rng != nil {
var parts []string
if rng.Minimum != "" {
parts = append(parts, fmt.Sprintf("minimum=%s", rng.Minimum))
}
if rng.Maximum != "" {
parts = append(parts, fmt.Sprintf("maximum=%s", rng.Maximum))
}
if rng.Step != "" {
parts = append(parts, fmt.Sprintf("step=%s", rng.Step))
}
return "allowed value range: " + strings.Join(parts, ", ")
}
if len(relVar.AllowedValues) != 0 {
return "allowed values: " + strings.Join(relVar.AllowedValues, ", ")
}
return ""
}
func (arg *argumentWrapper) Marshal() string {
return fmt.Sprintf("soap.Marshal%s(%s)", arg.conv.FuncSuffix, arg.Name)
}
func (arg *argumentWrapper) Unmarshal(objVar string) string {
return fmt.Sprintf("soap.Unmarshal%s(%s.%s)", arg.conv.FuncSuffix, objVar, arg.Name)
}
type conv struct {
FuncSuffix string
ExtType string
}
// typeConvs maps from a SOAP type (e.g "fixed.14.4") to the function name
// suffix inside the soap module (e.g "Fixed14_4") and the Go type.
var typeConvs = map[string]conv{
"ui1": conv{"Ui1", "uint8"},
"ui2": conv{"Ui2", "uint16"},
"ui4": conv{"Ui4", "uint32"},
"i1": conv{"I1", "int8"},
"i2": conv{"I2", "int16"},
"i4": conv{"I4", "int32"},
"int": conv{"Int", "int64"},
"r4": conv{"R4", "float32"},
"r8": conv{"R8", "float64"},
"number": conv{"R8", "float64"}, // Alias for r8.
"fixed.14.4": conv{"Fixed14_4", "float64"},
"float": conv{"R8", "float64"},
"char": conv{"Char", "rune"},
"string": conv{"String", "string"},
"date": conv{"Date", "time.Time"},
"dateTime": conv{"DateTime", "time.Time"},
"dateTime.tz": conv{"DateTimeTz", "time.Time"},
"time": conv{"TimeOfDay", "soap.TimeOfDay"},
"time.tz": conv{"TimeOfDayTz", "soap.TimeOfDay"},
"boolean": conv{"Boolean", "bool"},
"bin.base64": conv{"BinBase64", "[]byte"},
"bin.hex": conv{"BinHex", "[]byte"},
}
type closeableZipReader struct {
io.Closer
*zip.Reader
}
func openZipfile(filename string) (*closeableZipReader, error) {
file, err := os.Open(filename)
if err != nil {
return nil, err
}
fi, err := file.Stat()
if err != nil {
return nil, err
}
archive, err := zip.NewReader(file, fi.Size())
if err != nil {
return nil, err
}
return &closeableZipReader{
Closer: file,
Reader: archive,
}, nil
}
// openChildZip opens a zip file within another zip file.
func openChildZip(file *zip.File) (*zip.Reader, error) {
zipFile, err := file.Open()
if err != nil {
return nil, err
}
defer zipFile.Close()
zipBytes, err := ioutil.ReadAll(zipFile)
if err != nil {
return nil, err
}
return zip.NewReader(bytes.NewReader(zipBytes), int64(len(zipBytes)))
}
func globFiles(pattern string, archive *zip.Reader) []*zip.File {
var files []*zip.File
for _, f := range archive.File {
if matched, err := path.Match(pattern, f.Name); err != nil {
// This shouldn't happen - all patterns are hard-coded, errors in them
// are a programming error.
panic(err)
} else if matched {
files = append(files, f)
}
}
return files
}
func unmarshalXmlFile(file *zip.File, data interface{}) error {
r, err := file.Open()
if err != nil {
return err
}
decoder := xml.NewDecoder(r)
r.Close()
return decoder.Decode(data)
}
type URNParts struct {
URN string
Name string
Version string
}
func (u *URNParts) Const() string {
return fmt.Sprintf("URN_%s_%s", u.Name, u.Version)
}
// extractURNParts extracts the name and version from a URN string.
func extractURNParts(urn, expectedPrefix string) (*URNParts, error) {
if !strings.HasPrefix(urn, expectedPrefix) {
return nil, fmt.Errorf("%q does not have expected prefix %q", urn, expectedPrefix)
}
parts := strings.SplitN(strings.TrimPrefix(urn, expectedPrefix), ":", 2)
if len(parts) != 2 {
return nil, fmt.Errorf("%q does not have a name and version", urn)
}
name, version := parts[0], parts[1]
return &URNParts{urn, name, version}, nil
}
var scpdFilenameRe = regexp.MustCompile(
`.*/([a-zA-Z0-9]+)([0-9]+)\.xml`)
func urnPartsFromSCPDFilename(filename string) (*URNParts, error) {
parts := scpdFilenameRe.FindStringSubmatch(filename)
if len(parts) != 3 {
return nil, fmt.Errorf("SCPD filename %q does not have expected number of parts", filename)
}
name, version := parts[1], parts[2]
return &URNParts{
URN: serviceURNPrefix + name + ":" + version,
Name: name,
Version: version,
}, nil
}
var packageTmpl = template.Must(template.New("package").Parse(`{{$name := .Metadata.Name}}
// Client for UPnP Device Control Protocol {{.Metadata.OfficialName}}.
// {{if .Metadata.DocURL}}
// This DCP is documented in detail at: {{.Metadata.DocURL}}{{end}}
//
// Typically, use one of the New* functions to discover services on the local
// network.
package {{$name}}
// Generated file - do not edit by hand. See README.md
import (
"time"
"github.com/fjl/goupnp"
"github.com/fjl/goupnp/soap"
)
// Hack to avoid Go complaining if time isn't used.
var _ time.Time
// Device URNs:
const ({{range .DeviceTypes}}
{{.Const}} = "{{.URN}}"{{end}}
)
// Service URNs:
const ({{range .ServiceTypes}}
{{.Const}} = "{{.URN}}"{{end}}
)
{{range .Services}}
{{$srv := .}}
{{$srvIdent := printf "%s%s" .Name .Version}}
// {{$srvIdent}} is a client for UPnP SOAP service with URN "{{.URN}}". See
// goupnp.ServiceClient, which contains RootDevice and Service attributes which
// are provided for informational value.
type {{$srvIdent}} struct {
goupnp.ServiceClient
}
// New{{$srvIdent}}Clients discovers instances of the service on the network,
// and returns clients to any that are found. errors will contain an error for
// any devices that replied but which could not be queried, and err will be set
// if the discovery process failed outright.
//
// This is a typical entry calling point into this package.
func New{{$srvIdent}}Clients() (clients []*{{$srvIdent}}, errors []error, err error) {
var genericClients []goupnp.ServiceClient
if genericClients, errors, err = goupnp.NewServiceClients({{$srv.Const}}); err != nil {
return
}
clients = make([]*{{$srvIdent}}, len(genericClients))
for i := range genericClients {
clients[i] = &{{$srvIdent}}{genericClients[i]}
}
return
}
{{range .SCPD.Actions}}{{/* loops over *SCPDWithURN values */}}
{{$inargs := .InputArguments}}{{$outargs := .OutputArguments}}
// {{if $inargs}}Arguments:{{range $inargs}}{{$argWrap := $srv.WrapArgument .}}
//
// * {{.Name}}: {{$argWrap.Document}}{{end}}{{end}}
//
// {{if $outargs}}Return values:{{range $outargs}}{{$argWrap := $srv.WrapArgument .}}
//
// * {{.Name}}: {{$argWrap.Document}}{{end}}{{end}}
func (client *{{$srvIdent}}) {{.Name}}({{range $inargs}}{{/*
*/}}{{$argWrap := $srv.WrapArgument .}}{{$argWrap.AsParameter}}, {{end}}{{/*
*/}}) ({{range $outargs}}{{/*
*/}}{{$argWrap := $srv.WrapArgument .}}{{$argWrap.AsParameter}}, {{end}} err error) {
// Request structure.
request := {{if $inargs}}&{{template "argstruct" $inargs}}{{"{}"}}{{else}}{{"interface{}(nil)"}}{{end}}
// BEGIN Marshal arguments into request.
{{range $inargs}}{{$argWrap := $srv.WrapArgument .}}
if request.{{.Name}}, err = {{$argWrap.Marshal}}; err != nil {
return
}{{end}}
// END Marshal arguments into request.
// Response structure.
response := {{if $outargs}}&{{template "argstruct" $outargs}}{{"{}"}}{{else}}{{"interface{}(nil)"}}{{end}}
// Perform the SOAP call.
if err = client.SOAPClient.PerformAction({{$srv.URNParts.Const}}, "{{.Name}}", request, response); err != nil {
return
}
// BEGIN Unmarshal arguments from response.
{{range $outargs}}{{$argWrap := $srv.WrapArgument .}}
if {{.Name}}, err = {{$argWrap.Unmarshal "response"}}; err != nil {
return
}{{end}}
// END Unmarshal arguments from response.
return
}
{{end}}{{/* range .SCPD.Actions */}}
{{end}}{{/* range .Services */}}
{{define "argstruct"}}struct {{"{"}}{{range .}}
{{.Name}} string
{{end}}{{"}"}}{{end}}
`))

109
Godeps/_workspace/src/github.com/fjl/goupnp/goupnp.go generated vendored Normal file
View File

@@ -0,0 +1,109 @@
// goupnp is an implementation of a client for various UPnP services.
//
// For most uses, it is recommended to use the code-generated packages under
// github.com/fjl/goupnp/dcps. Example use is shown at
// http://godoc.org/github.com/fjl/goupnp/example
//
// A commonly used client is internetgateway1.WANPPPConnection1:
// http://godoc.org/github.com/fjl/goupnp/dcps/internetgateway1#WANPPPConnection1
//
// Currently only a couple of schemas have code generated for them from the
// UPnP example XML specifications. Not all methods will work on these clients,
// because the generated stubs contain the full set of specified methods from
// the XML specifications, and the discovered services will likely support a
// subset of those methods.
package goupnp
import (
"encoding/xml"
"fmt"
"net/http"
"net/url"
"github.com/fjl/goupnp/httpu"
"github.com/fjl/goupnp/ssdp"
)
// ContextError is an error that wraps an error with some context information.
type ContextError struct {
Context string
Err error
}
func (err ContextError) Error() string {
return fmt.Sprintf("%s: %v", err.Context, err.Err)
}
// MaybeRootDevice contains either a RootDevice or an error.
type MaybeRootDevice struct {
Root *RootDevice
Err error
}
// DiscoverDevices attempts to find targets of the given type. This is
// typically the entry-point for this package. searchTarget is typically a URN
// in the form "urn:schemas-upnp-org:device:..." or
// "urn:schemas-upnp-org:service:...". A single error is returned for errors
// while attempting to send the query. An error or RootDevice is returned for
// each discovered RootDevice.
func DiscoverDevices(searchTarget string) ([]MaybeRootDevice, error) {
httpu, err := httpu.NewHTTPUClient()
if err != nil {
return nil, err
}
defer httpu.Close()
responses, err := ssdp.SSDPRawSearch(httpu, string(searchTarget), 2, 3)
if err != nil {
return nil, err
}
results := make([]MaybeRootDevice, len(responses))
for i, response := range responses {
maybe := &results[i]
loc, err := response.Location()
if err != nil {
maybe.Err = ContextError{"unexpected bad location from search", err}
continue
}
locStr := loc.String()
root := new(RootDevice)
if err := requestXml(locStr, DeviceXMLNamespace, root); err != nil {
maybe.Err = ContextError{fmt.Sprintf("error requesting root device details from %q", locStr), err}
continue
}
var urlBaseStr string
if root.URLBaseStr != "" {
urlBaseStr = root.URLBaseStr
} else {
urlBaseStr = locStr
}
urlBase, err := url.Parse(urlBaseStr)
if err != nil {
maybe.Err = ContextError{fmt.Sprintf("error parsing location URL %q", locStr), err}
continue
}
root.SetURLBase(urlBase)
maybe.Root = root
}
return results, nil
}
func requestXml(url string, defaultSpace string, doc interface{}) error {
resp, err := http.Get(url)
if err != nil {
return err
}
defer resp.Body.Close()
if resp.StatusCode != 200 {
return fmt.Errorf("goupnp: got response status %s from %q",
resp.Status, url)
}
decoder := xml.NewDecoder(resp.Body)
decoder.DefaultSpace = defaultSpace
return decoder.Decode(doc)
}

View File

@@ -0,0 +1,117 @@
package httpu
import (
"bufio"
"bytes"
"fmt"
"log"
"net"
"net/http"
"sync"
"time"
)
// HTTPUClient is a client for dealing with HTTPU (HTTP over UDP). Its typical
// function is for HTTPMU, and particularly SSDP.
type HTTPUClient struct {
connLock sync.Mutex // Protects use of conn.
conn net.PacketConn
}
// NewHTTPUClient creates a new HTTPUClient, opening up a new UDP socket for the
// purpose.
func NewHTTPUClient() (*HTTPUClient, error) {
conn, err := net.ListenPacket("udp", ":0")
if err != nil {
return nil, err
}
return &HTTPUClient{conn: conn}, nil
}
// Close shuts down the client. The client will no longer be useful following
// this.
func (httpu *HTTPUClient) Close() error {
httpu.connLock.Lock()
defer httpu.connLock.Unlock()
return httpu.conn.Close()
}
// Do performs a request. The timeout is how long to wait for before returning
// the responses that were received. An error is only returned for failing to
// send the request. Failures in receipt simply do not add to the resulting
// responses.
//
// Note that at present only one concurrent connection will happen per
// HTTPUClient.
func (httpu *HTTPUClient) Do(req *http.Request, timeout time.Duration, numSends int) ([]*http.Response, error) {
httpu.connLock.Lock()
defer httpu.connLock.Unlock()
// Create the request. This is a subset of what http.Request.Write does
// deliberately to avoid creating extra fields which may confuse some
// devices.
var requestBuf bytes.Buffer
method := req.Method
if method == "" {
method = "GET"
}
if _, err := fmt.Fprintf(&requestBuf, "%s %s HTTP/1.1\r\n", method, req.URL.RequestURI()); err != nil {
return nil, err
}
if err := req.Header.Write(&requestBuf); err != nil {
return nil, err
}
if _, err := requestBuf.Write([]byte{'\r', '\n'}); err != nil {
return nil, err
}
destAddr, err := net.ResolveUDPAddr("udp", req.Host)
if err != nil {
return nil, err
}
if err = httpu.conn.SetDeadline(time.Now().Add(timeout)); err != nil {
return nil, err
}
// Send request.
for i := 0; i < numSends; i++ {
if n, err := httpu.conn.WriteTo(requestBuf.Bytes(), destAddr); err != nil {
return nil, err
} else if n < len(requestBuf.Bytes()) {
return nil, fmt.Errorf("httpu: wrote %d bytes rather than full %d in request",
n, len(requestBuf.Bytes()))
}
time.Sleep(5 * time.Millisecond)
}
// Await responses until timeout.
var responses []*http.Response
responseBytes := make([]byte, 2048)
for {
// 2048 bytes should be sufficient for most networks.
n, _, err := httpu.conn.ReadFrom(responseBytes)
if err != nil {
if err, ok := err.(net.Error); ok {
if err.Timeout() {
break
}
if err.Temporary() {
// Sleep in case this is a persistent error to avoid pegging CPU until deadline.
time.Sleep(10 * time.Millisecond)
continue
}
}
return nil, err
}
// Parse response.
response, err := http.ReadResponse(bufio.NewReader(bytes.NewBuffer(responseBytes[:n])), req)
if err != nil {
log.Print("httpu: error while parsing response: %v", err)
continue
}
responses = append(responses, response)
}
return responses, err
}

View File

@@ -0,0 +1,108 @@
package httpu
import (
"bufio"
"bytes"
"log"
"net"
"net/http"
"regexp"
)
const (
DefaultMaxMessageBytes = 2048
)
var (
trailingWhitespaceRx = regexp.MustCompile(" +\r\n")
crlf = []byte("\r\n")
)
// Handler is the interface by which received HTTPU messages are passed to
// handling code.
type Handler interface {
// ServeMessage is called for each HTTPU message received. peerAddr contains
// the address that the message was received from.
ServeMessage(r *http.Request)
}
// HandlerFunc is a function-to-Handler adapter.
type HandlerFunc func(r *http.Request)
func (f HandlerFunc) ServeMessage(r *http.Request) {
f(r)
}
// A Server defines parameters for running an HTTPU server.
type Server struct {
Addr string // UDP address to listen on
Multicast bool // Should listen for multicast?
Interface *net.Interface // Network interface to listen on for multicast, nil for default multicast interface
Handler Handler // handler to invoke
MaxMessageBytes int // maximum number of bytes to read from a packet, DefaultMaxMessageBytes if 0
}
// ListenAndServe listens on the UDP network address srv.Addr. If srv.Multicast
// is true, then a multicast UDP listener will be used on srv.Interface (or
// default interface if nil).
func (srv *Server) ListenAndServe() error {
var err error
var addr *net.UDPAddr
if addr, err = net.ResolveUDPAddr("udp", srv.Addr); err != nil {
log.Fatal(err)
}
var conn net.PacketConn
if srv.Multicast {
if conn, err = net.ListenMulticastUDP("udp", srv.Interface, addr); err != nil {
return err
}
} else {
if conn, err = net.ListenUDP("udp", addr); err != nil {
return err
}
}
return srv.Serve(conn)
}
// Serve messages received on the given packet listener to the srv.Handler.
func (srv *Server) Serve(l net.PacketConn) error {
maxMessageBytes := DefaultMaxMessageBytes
if srv.MaxMessageBytes != 0 {
maxMessageBytes = srv.MaxMessageBytes
}
for {
buf := make([]byte, maxMessageBytes)
n, peerAddr, err := l.ReadFrom(buf)
if err != nil {
return err
}
buf = buf[:n]
go func(buf []byte, peerAddr net.Addr) {
// At least one router's UPnP implementation has added a trailing space
// after "HTTP/1.1" - trim it.
buf = trailingWhitespaceRx.ReplaceAllLiteral(buf, crlf)
req, err := http.ReadRequest(bufio.NewReader(bytes.NewBuffer(buf)))
if err != nil {
log.Printf("httpu: Failed to parse request: %v", err)
return
}
req.RemoteAddr = peerAddr.String()
srv.Handler.ServeMessage(req)
// No need to call req.Body.Close - underlying reader is bytes.Buffer.
}(buf, peerAddr)
}
}
// Serve messages received on the given packet listener to the given handler.
func Serve(l net.PacketConn, handler Handler) error {
srv := Server{
Handler: handler,
MaxMessageBytes: DefaultMaxMessageBytes,
}
return srv.Serve(l)
}

View File

@@ -0,0 +1,167 @@
package scpd
import (
"encoding/xml"
"strings"
)
const (
SCPDXMLNamespace = "urn:schemas-upnp-org:service-1-0"
)
func cleanWhitespace(s *string) {
*s = strings.TrimSpace(*s)
}
// SCPD is the service description as described by section 2.5 "Service
// description" in
// http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
type SCPD struct {
XMLName xml.Name `xml:"scpd"`
ConfigId string `xml:"configId,attr"`
SpecVersion SpecVersion `xml:"specVersion"`
Actions []Action `xml:"actionList>action"`
StateVariables []StateVariable `xml:"serviceStateTable>stateVariable"`
}
// Clean attempts to remove stray whitespace etc. in the structure. It seems
// unfortunately common for stray whitespace to be present in SCPD documents,
// this method attempts to make it easy to clean them out.
func (scpd *SCPD) Clean() {
cleanWhitespace(&scpd.ConfigId)
for i := range scpd.Actions {
scpd.Actions[i].clean()
}
for i := range scpd.StateVariables {
scpd.StateVariables[i].clean()
}
}
func (scpd *SCPD) GetStateVariable(variable string) *StateVariable {
for i := range scpd.StateVariables {
v := &scpd.StateVariables[i]
if v.Name == variable {
return v
}
}
return nil
}
func (scpd *SCPD) GetAction(action string) *Action {
for i := range scpd.Actions {
a := &scpd.Actions[i]
if a.Name == action {
return a
}
}
return nil
}
// SpecVersion is part of a SCPD document, describes the version of the
// specification that the data adheres to.
type SpecVersion struct {
Major int32 `xml:"major"`
Minor int32 `xml:"minor"`
}
type Action struct {
Name string `xml:"name"`
Arguments []Argument `xml:"argumentList>argument"`
}
func (action *Action) clean() {
cleanWhitespace(&action.Name)
for i := range action.Arguments {
action.Arguments[i].clean()
}
}
func (action *Action) InputArguments() []*Argument {
var result []*Argument
for i := range action.Arguments {
arg := &action.Arguments[i]
if arg.IsInput() {
result = append(result, arg)
}
}
return result
}
func (action *Action) OutputArguments() []*Argument {
var result []*Argument
for i := range action.Arguments {
arg := &action.Arguments[i]
if arg.IsOutput() {
result = append(result, arg)
}
}
return result
}
type Argument struct {
Name string `xml:"name"`
Direction string `xml:"direction"` // in|out
RelatedStateVariable string `xml:"relatedStateVariable"` // ?
Retval string `xml:"retval"` // ?
}
func (arg *Argument) clean() {
cleanWhitespace(&arg.Name)
cleanWhitespace(&arg.Direction)
cleanWhitespace(&arg.RelatedStateVariable)
cleanWhitespace(&arg.Retval)
}
func (arg *Argument) IsInput() bool {
return arg.Direction == "in"
}
func (arg *Argument) IsOutput() bool {
return arg.Direction == "out"
}
type StateVariable struct {
Name string `xml:"name"`
SendEvents string `xml:"sendEvents,attr"` // yes|no
Multicast string `xml:"multicast,attr"` // yes|no
DataType DataType `xml:"dataType"`
DefaultValue string `xml:"defaultValue"`
AllowedValueRange *AllowedValueRange `xml:"allowedValueRange"`
AllowedValues []string `xml:"allowedValueList>allowedValue"`
}
func (v *StateVariable) clean() {
cleanWhitespace(&v.Name)
cleanWhitespace(&v.SendEvents)
cleanWhitespace(&v.Multicast)
v.DataType.clean()
cleanWhitespace(&v.DefaultValue)
if v.AllowedValueRange != nil {
v.AllowedValueRange.clean()
}
for i := range v.AllowedValues {
cleanWhitespace(&v.AllowedValues[i])
}
}
type AllowedValueRange struct {
Minimum string `xml:"minimum"`
Maximum string `xml:"maximum"`
Step string `xml:"step"`
}
func (r *AllowedValueRange) clean() {
cleanWhitespace(&r.Minimum)
cleanWhitespace(&r.Maximum)
cleanWhitespace(&r.Step)
}
type DataType struct {
Name string `xml:",chardata"`
Type string `xml:"type,attr"`
}
func (dt *DataType) clean() {
cleanWhitespace(&dt.Name)
cleanWhitespace(&dt.Type)
}

View File

@@ -0,0 +1,57 @@
package goupnp
import (
"fmt"
"github.com/fjl/goupnp/soap"
)
// ServiceClient is a SOAP client, root device and the service for the SOAP
// client rolled into one value. The root device and service are intended to be
// informational.
type ServiceClient struct {
SOAPClient *soap.SOAPClient
RootDevice *RootDevice
Service *Service
}
func NewServiceClients(searchTarget string) (clients []ServiceClient, errors []error, err error) {
var maybeRootDevices []MaybeRootDevice
if maybeRootDevices, err = DiscoverDevices(searchTarget); err != nil {
return
}
clients = make([]ServiceClient, 0, len(maybeRootDevices))
for _, maybeRootDevice := range maybeRootDevices {
if maybeRootDevice.Err != nil {
errors = append(errors, maybeRootDevice.Err)
continue
}
device := &maybeRootDevice.Root.Device
srvs := device.FindService(searchTarget)
if len(srvs) == 0 {
errors = append(errors, fmt.Errorf("goupnp: service %q not found within device %q (UDN=%q)",
searchTarget, device.FriendlyName, device.UDN))
continue
}
for _, srv := range srvs {
clients = append(clients, ServiceClient{
SOAPClient: srv.NewSOAPClient(),
RootDevice: maybeRootDevice.Root,
Service: srv,
})
}
}
return
}
// GetServiceClient returns the ServiceClient itself. This is provided so that the
// service client attributes can be accessed via an interface method on a
// wrapping type.
func (client *ServiceClient) GetServiceClient() *ServiceClient {
return client
}

View File

@@ -0,0 +1,157 @@
// Definition for the SOAP structure required for UPnP's SOAP usage.
package soap
import (
"bytes"
"encoding/xml"
"fmt"
"io/ioutil"
"net/http"
"net/url"
"reflect"
)
const (
soapEncodingStyle = "http://schemas.xmlsoap.org/soap/encoding/"
soapPrefix = xml.Header + `<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><s:Body>`
soapSuffix = `</s:Body></s:Envelope>`
)
type SOAPClient struct {
EndpointURL url.URL
HTTPClient http.Client
}
func NewSOAPClient(endpointURL url.URL) *SOAPClient {
return &SOAPClient{
EndpointURL: endpointURL,
}
}
// PerformSOAPAction makes a SOAP request, with the given action.
// inAction and outAction must both be pointers to structs with string fields
// only.
func (client *SOAPClient) PerformAction(actionNamespace, actionName string, inAction interface{}, outAction interface{}) error {
requestBytes, err := encodeRequestAction(actionNamespace, actionName, inAction)
if err != nil {
return err
}
response, err := client.HTTPClient.Do(&http.Request{
Method: "POST",
URL: &client.EndpointURL,
Header: http.Header{
"SOAPACTION": []string{`"` + actionNamespace + "#" + actionName + `"`},
"CONTENT-TYPE": []string{"text/xml; charset=\"utf-8\""},
},
Body: ioutil.NopCloser(bytes.NewBuffer(requestBytes)),
// Set ContentLength to avoid chunked encoding - some servers might not support it.
ContentLength: int64(len(requestBytes)),
})
if err != nil {
return fmt.Errorf("goupnp: error performing SOAP HTTP request: %v", err)
}
defer response.Body.Close()
if response.StatusCode != 200 {
return fmt.Errorf("goupnp: SOAP request got HTTP %s", response.Status)
}
responseEnv := newSOAPEnvelope()
decoder := xml.NewDecoder(response.Body)
if err := decoder.Decode(responseEnv); err != nil {
return fmt.Errorf("goupnp: error decoding response body: %v", err)
}
if responseEnv.Body.Fault != nil {
return responseEnv.Body.Fault
}
if outAction != nil {
if err := xml.Unmarshal(responseEnv.Body.RawAction, outAction); err != nil {
return fmt.Errorf("goupnp: error unmarshalling out action: %v, %v", err, responseEnv.Body.RawAction)
}
}
return nil
}
// newSOAPAction creates a soapEnvelope with the given action and arguments.
func newSOAPEnvelope() *soapEnvelope {
return &soapEnvelope{
EncodingStyle: soapEncodingStyle,
}
}
// encodeRequestAction is a hacky way to create an encoded SOAP envelope
// containing the given action. Experiments with one router have shown that it
// 500s for requests where the outer default xmlns is set to the SOAP
// namespace, and then reassigning the default namespace within that to the
// service namespace. Hand-coding the outer XML to work-around this.
func encodeRequestAction(actionNamespace, actionName string, inAction interface{}) ([]byte, error) {
requestBuf := new(bytes.Buffer)
requestBuf.WriteString(soapPrefix)
requestBuf.WriteString(`<u:`)
xml.EscapeText(requestBuf, []byte(actionName))
requestBuf.WriteString(` xmlns:u="`)
xml.EscapeText(requestBuf, []byte(actionNamespace))
requestBuf.WriteString(`">`)
if inAction != nil {
if err := encodeRequestArgs(requestBuf, inAction); err != nil {
return nil, err
}
}
requestBuf.WriteString(`</u:`)
xml.EscapeText(requestBuf, []byte(actionName))
requestBuf.WriteString(`>`)
requestBuf.WriteString(soapSuffix)
return requestBuf.Bytes(), nil
}
func encodeRequestArgs(w *bytes.Buffer, inAction interface{}) error {
in := reflect.Indirect(reflect.ValueOf(inAction))
if in.Kind() != reflect.Struct {
return fmt.Errorf("goupnp: SOAP inAction is not a struct but of type %v", in.Type())
}
enc := xml.NewEncoder(w)
nFields := in.NumField()
inType := in.Type()
for i := 0; i < nFields; i++ {
field := inType.Field(i)
argName := field.Name
if nameOverride := field.Tag.Get("soap"); nameOverride != "" {
argName = nameOverride
}
value := in.Field(i)
if value.Kind() != reflect.String {
return fmt.Errorf("goupnp: SOAP arg %q is not of type string, but of type %v", argName, value.Type())
}
if err := enc.EncodeElement(value.Interface(), xml.StartElement{xml.Name{"", argName}, nil}); err != nil {
return fmt.Errorf("goupnp: error encoding SOAP arg %q: %v", argName, err)
}
}
enc.Flush()
return nil
}
type soapEnvelope struct {
XMLName xml.Name `xml:"http://schemas.xmlsoap.org/soap/envelope/ Envelope"`
EncodingStyle string `xml:"http://schemas.xmlsoap.org/soap/envelope/ encodingStyle,attr"`
Body soapBody `xml:"http://schemas.xmlsoap.org/soap/envelope/ Body"`
}
type soapBody struct {
Fault *SOAPFaultError `xml:"Fault"`
RawAction []byte `xml:",innerxml"`
}
// SOAPFaultError implements error, and contains SOAP fault information.
type SOAPFaultError struct {
FaultCode string `xml:"faultcode"`
FaultString string `xml:"faultstring"`
Detail string `xml:"detail"`
}
func (err *SOAPFaultError) Error() string {
return fmt.Sprintf("SOAP fault: %s", err.FaultString)
}

View File

@@ -0,0 +1,85 @@
package soap
import (
"bytes"
"io/ioutil"
"net/http"
"net/url"
"reflect"
"testing"
)
type capturingRoundTripper struct {
err error
resp *http.Response
capturedReq *http.Request
}
func (rt *capturingRoundTripper) RoundTrip(req *http.Request) (*http.Response, error) {
rt.capturedReq = req
return rt.resp, rt.err
}
func TestActionInputs(t *testing.T) {
url, err := url.Parse("http://example.com/soap")
if err != nil {
t.Fatal(err)
}
rt := &capturingRoundTripper{
err: nil,
resp: &http.Response{
StatusCode: 200,
Body: ioutil.NopCloser(bytes.NewBufferString(`
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<u:myactionResponse xmlns:u="mynamespace">
<A>valueA</A>
<B>valueB</B>
</u:myactionResponse>
</s:Body>
</s:Envelope>
`)),
},
}
client := SOAPClient{
EndpointURL: *url,
HTTPClient: http.Client{
Transport: rt,
},
}
type In struct {
Foo string
Bar string `soap:"bar"`
}
type Out struct {
A string
B string
}
in := In{"foo", "bar"}
gotOut := Out{}
err = client.PerformAction("mynamespace", "myaction", &in, &gotOut)
if err != nil {
t.Fatal(err)
}
wantBody := (soapPrefix +
`<u:myaction xmlns:u="mynamespace">` +
`<Foo>foo</Foo>` +
`<bar>bar</bar>` +
`</u:myaction>` +
soapSuffix)
body, err := ioutil.ReadAll(rt.capturedReq.Body)
if err != nil {
t.Fatal(err)
}
gotBody := string(body)
if wantBody != gotBody {
t.Errorf("Bad request body\nwant: %q\n got: %q", wantBody, gotBody)
}
wantOut := Out{"valueA", "valueB"}
if !reflect.DeepEqual(wantOut, gotOut) {
t.Errorf("Bad output\nwant: %+v\n got: %+v", wantOut, gotOut)
}
}

View File

@@ -0,0 +1,508 @@
package soap
import (
"encoding/base64"
"encoding/hex"
"errors"
"fmt"
"regexp"
"strconv"
"strings"
"time"
"unicode/utf8"
)
var (
// localLoc acts like time.Local for this package, but is faked out by the
// unit tests to ensure that things stay constant (especially when running
// this test in a place where local time is UTC which might mask bugs).
localLoc = time.Local
)
func MarshalUi1(v uint8) (string, error) {
return strconv.FormatUint(uint64(v), 10), nil
}
func UnmarshalUi1(s string) (uint8, error) {
v, err := strconv.ParseUint(s, 10, 8)
return uint8(v), err
}
func MarshalUi2(v uint16) (string, error) {
return strconv.FormatUint(uint64(v), 10), nil
}
func UnmarshalUi2(s string) (uint16, error) {
v, err := strconv.ParseUint(s, 10, 16)
return uint16(v), err
}
func MarshalUi4(v uint32) (string, error) {
return strconv.FormatUint(uint64(v), 10), nil
}
func UnmarshalUi4(s string) (uint32, error) {
v, err := strconv.ParseUint(s, 10, 32)
return uint32(v), err
}
func MarshalI1(v int8) (string, error) {
return strconv.FormatInt(int64(v), 10), nil
}
func UnmarshalI1(s string) (int8, error) {
v, err := strconv.ParseInt(s, 10, 8)
return int8(v), err
}
func MarshalI2(v int16) (string, error) {
return strconv.FormatInt(int64(v), 10), nil
}
func UnmarshalI2(s string) (int16, error) {
v, err := strconv.ParseInt(s, 10, 16)
return int16(v), err
}
func MarshalI4(v int32) (string, error) {
return strconv.FormatInt(int64(v), 10), nil
}
func UnmarshalI4(s string) (int32, error) {
v, err := strconv.ParseInt(s, 10, 32)
return int32(v), err
}
func MarshalInt(v int64) (string, error) {
return strconv.FormatInt(v, 10), nil
}
func UnmarshalInt(s string) (int64, error) {
return strconv.ParseInt(s, 10, 64)
}
func MarshalR4(v float32) (string, error) {
return strconv.FormatFloat(float64(v), 'G', -1, 32), nil
}
func UnmarshalR4(s string) (float32, error) {
v, err := strconv.ParseFloat(s, 32)
return float32(v), err
}
func MarshalR8(v float64) (string, error) {
return strconv.FormatFloat(v, 'G', -1, 64), nil
}
func UnmarshalR8(s string) (float64, error) {
v, err := strconv.ParseFloat(s, 64)
return float64(v), err
}
// MarshalFixed14_4 marshals float64 to SOAP "fixed.14.4" type.
func MarshalFixed14_4(v float64) (string, error) {
if v >= 1e14 || v <= -1e14 {
return "", fmt.Errorf("soap fixed14.4: value %v out of bounds", v)
}
return strconv.FormatFloat(v, 'f', 4, 64), nil
}
// UnmarshalFixed14_4 unmarshals float64 from SOAP "fixed.14.4" type.
func UnmarshalFixed14_4(s string) (float64, error) {
v, err := strconv.ParseFloat(s, 64)
if err != nil {
return 0, err
}
if v >= 1e14 || v <= -1e14 {
return 0, fmt.Errorf("soap fixed14.4: value %q out of bounds", s)
}
return v, nil
}
// MarshalChar marshals rune to SOAP "char" type.
func MarshalChar(v rune) (string, error) {
if v == 0 {
return "", errors.New("soap char: rune 0 is not allowed")
}
return string(v), nil
}
// UnmarshalChar unmarshals rune from SOAP "char" type.
func UnmarshalChar(s string) (rune, error) {
if len(s) == 0 {
return 0, errors.New("soap char: got empty string")
}
r, n := utf8.DecodeRune([]byte(s))
if n != len(s) {
return 0, fmt.Errorf("soap char: value %q is not a single rune", s)
}
return r, nil
}
func MarshalString(v string) (string, error) {
return v, nil
}
func UnmarshalString(v string) (string, error) {
return v, nil
}
func parseInt(s string, err *error) int {
v, parseErr := strconv.ParseInt(s, 10, 64)
if parseErr != nil {
*err = parseErr
}
return int(v)
}
var dateRegexps = []*regexp.Regexp{
// yyyy[-mm[-dd]]
regexp.MustCompile(`^(\d{4})(?:-(\d{2})(?:-(\d{2}))?)?$`),
// yyyy[mm[dd]]
regexp.MustCompile(`^(\d{4})(?:(\d{2})(?:(\d{2}))?)?$`),
}
func parseDateParts(s string) (year, month, day int, err error) {
var parts []string
for _, re := range dateRegexps {
parts = re.FindStringSubmatch(s)
if parts != nil {
break
}
}
if parts == nil {
err = fmt.Errorf("soap date: value %q is not in a recognized ISO8601 date format", s)
return
}
year = parseInt(parts[1], &err)
month = 1
day = 1
if len(parts[2]) != 0 {
month = parseInt(parts[2], &err)
if len(parts[3]) != 0 {
day = parseInt(parts[3], &err)
}
}
if err != nil {
err = fmt.Errorf("soap date: %q: %v", s, err)
}
return
}
var timeRegexps = []*regexp.Regexp{
// hh[:mm[:ss]]
regexp.MustCompile(`^(\d{2})(?::(\d{2})(?::(\d{2}))?)?$`),
// hh[mm[ss]]
regexp.MustCompile(`^(\d{2})(?:(\d{2})(?:(\d{2}))?)?$`),
}
func parseTimeParts(s string) (hour, minute, second int, err error) {
var parts []string
for _, re := range timeRegexps {
parts = re.FindStringSubmatch(s)
if parts != nil {
break
}
}
if parts == nil {
err = fmt.Errorf("soap time: value %q is not in ISO8601 time format", s)
return
}
hour = parseInt(parts[1], &err)
if len(parts[2]) != 0 {
minute = parseInt(parts[2], &err)
if len(parts[3]) != 0 {
second = parseInt(parts[3], &err)
}
}
if err != nil {
err = fmt.Errorf("soap time: %q: %v", s, err)
}
return
}
// (+|-)hh[[:]mm]
var timezoneRegexp = regexp.MustCompile(`^([+-])(\d{2})(?::?(\d{2}))?$`)
func parseTimezone(s string) (offset int, err error) {
if s == "Z" {
return 0, nil
}
parts := timezoneRegexp.FindStringSubmatch(s)
if parts == nil {
err = fmt.Errorf("soap timezone: value %q is not in ISO8601 timezone format", s)
return
}
offset = parseInt(parts[2], &err) * 3600
if len(parts[3]) != 0 {
offset += parseInt(parts[3], &err) * 60
}
if parts[1] == "-" {
offset = -offset
}
if err != nil {
err = fmt.Errorf("soap timezone: %q: %v", s, err)
}
return
}
var completeDateTimeZoneRegexp = regexp.MustCompile(`^([^T]+)(?:T([^-+Z]+)(.+)?)?$`)
// splitCompleteDateTimeZone splits date, time and timezone apart from an
// ISO8601 string. It does not ensure that the contents of each part are
// correct, it merely splits on certain delimiters.
// e.g "2010-09-08T12:15:10+0700" => "2010-09-08", "12:15:10", "+0700".
// Timezone can only be present if time is also present.
func splitCompleteDateTimeZone(s string) (dateStr, timeStr, zoneStr string, err error) {
parts := completeDateTimeZoneRegexp.FindStringSubmatch(s)
if parts == nil {
err = fmt.Errorf("soap date/time/zone: value %q is not in ISO8601 datetime format", s)
return
}
dateStr = parts[1]
timeStr = parts[2]
zoneStr = parts[3]
return
}
// MarshalDate marshals time.Time to SOAP "date" type. Note that this converts
// to local time, and discards the time-of-day components.
func MarshalDate(v time.Time) (string, error) {
return v.In(localLoc).Format("2006-01-02"), nil
}
var dateFmts = []string{"2006-01-02", "20060102"}
// UnmarshalDate unmarshals time.Time from SOAP "date" type. This outputs the
// date as midnight in the local time zone.
func UnmarshalDate(s string) (time.Time, error) {
year, month, day, err := parseDateParts(s)
if err != nil {
return time.Time{}, err
}
return time.Date(year, time.Month(month), day, 0, 0, 0, 0, localLoc), nil
}
// TimeOfDay is used in cases where SOAP "time" or "time.tz" is used.
type TimeOfDay struct {
// Duration of time since midnight.
FromMidnight time.Duration
// Set to true if Offset is specified. If false, then the timezone is
// unspecified (and by ISO8601 - implies some "local" time).
HasOffset bool
// Offset is non-zero only if time.tz is used. It is otherwise ignored. If
// non-zero, then it is regarded as a UTC offset in seconds. Note that the
// sub-minutes is ignored by the marshal function.
Offset int
}
// MarshalTimeOfDay marshals TimeOfDay to the "time" type.
func MarshalTimeOfDay(v TimeOfDay) (string, error) {
d := int64(v.FromMidnight / time.Second)
hour := d / 3600
d = d % 3600
minute := d / 60
second := d % 60
return fmt.Sprintf("%02d:%02d:%02d", hour, minute, second), nil
}
// UnmarshalTimeOfDay unmarshals TimeOfDay from the "time" type.
func UnmarshalTimeOfDay(s string) (TimeOfDay, error) {
t, err := UnmarshalTimeOfDayTz(s)
if err != nil {
return TimeOfDay{}, err
} else if t.HasOffset {
return TimeOfDay{}, fmt.Errorf("soap time: value %q contains unexpected timezone")
}
return t, nil
}
// MarshalTimeOfDayTz marshals TimeOfDay to the "time.tz" type.
func MarshalTimeOfDayTz(v TimeOfDay) (string, error) {
d := int64(v.FromMidnight / time.Second)
hour := d / 3600
d = d % 3600
minute := d / 60
second := d % 60
tz := ""
if v.HasOffset {
if v.Offset == 0 {
tz = "Z"
} else {
offsetMins := v.Offset / 60
sign := '+'
if offsetMins < 1 {
offsetMins = -offsetMins
sign = '-'
}
tz = fmt.Sprintf("%c%02d:%02d", sign, offsetMins/60, offsetMins%60)
}
}
return fmt.Sprintf("%02d:%02d:%02d%s", hour, minute, second, tz), nil
}
// UnmarshalTimeOfDayTz unmarshals TimeOfDay from the "time.tz" type.
func UnmarshalTimeOfDayTz(s string) (tod TimeOfDay, err error) {
zoneIndex := strings.IndexAny(s, "Z+-")
var timePart string
var hasOffset bool
var offset int
if zoneIndex == -1 {
hasOffset = false
timePart = s
} else {
hasOffset = true
timePart = s[:zoneIndex]
if offset, err = parseTimezone(s[zoneIndex:]); err != nil {
return
}
}
hour, minute, second, err := parseTimeParts(timePart)
if err != nil {
return
}
fromMidnight := time.Duration(hour*3600+minute*60+second) * time.Second
// ISO8601 special case - values up to 24:00:00 are allowed, so using
// strictly greater-than for the maximum value.
if fromMidnight > 24*time.Hour || minute >= 60 || second >= 60 {
return TimeOfDay{}, fmt.Errorf("soap time.tz: value %q has value(s) out of range", s)
}
return TimeOfDay{
FromMidnight: time.Duration(hour*3600+minute*60+second) * time.Second,
HasOffset: hasOffset,
Offset: offset,
}, nil
}
// MarshalDateTime marshals time.Time to SOAP "dateTime" type. Note that this
// converts to local time.
func MarshalDateTime(v time.Time) (string, error) {
return v.In(localLoc).Format("2006-01-02T15:04:05"), nil
}
// UnmarshalDateTime unmarshals time.Time from the SOAP "dateTime" type. This
// returns a value in the local timezone.
func UnmarshalDateTime(s string) (result time.Time, err error) {
dateStr, timeStr, zoneStr, err := splitCompleteDateTimeZone(s)
if err != nil {
return
}
if len(zoneStr) != 0 {
err = fmt.Errorf("soap datetime: unexpected timezone in %q", s)
return
}
year, month, day, err := parseDateParts(dateStr)
if err != nil {
return
}
var hour, minute, second int
if len(timeStr) != 0 {
hour, minute, second, err = parseTimeParts(timeStr)
if err != nil {
return
}
}
result = time.Date(year, time.Month(month), day, hour, minute, second, 0, localLoc)
return
}
// MarshalDateTimeTz marshals time.Time to SOAP "dateTime.tz" type.
func MarshalDateTimeTz(v time.Time) (string, error) {
return v.Format("2006-01-02T15:04:05-07:00"), nil
}
// UnmarshalDateTimeTz unmarshals time.Time from the SOAP "dateTime.tz" type.
// This returns a value in the local timezone when the timezone is unspecified.
func UnmarshalDateTimeTz(s string) (result time.Time, err error) {
dateStr, timeStr, zoneStr, err := splitCompleteDateTimeZone(s)
if err != nil {
return
}
year, month, day, err := parseDateParts(dateStr)
if err != nil {
return
}
var hour, minute, second int
var location *time.Location = localLoc
if len(timeStr) != 0 {
hour, minute, second, err = parseTimeParts(timeStr)
if err != nil {
return
}
if len(zoneStr) != 0 {
var offset int
offset, err = parseTimezone(zoneStr)
if offset == 0 {
location = time.UTC
} else {
location = time.FixedZone("", offset)
}
}
}
result = time.Date(year, time.Month(month), day, hour, minute, second, 0, location)
return
}
// MarshalBoolean marshals bool to SOAP "boolean" type.
func MarshalBoolean(v bool) (string, error) {
if v {
return "1", nil
}
return "0", nil
}
// UnmarshalBoolean unmarshals bool from the SOAP "boolean" type.
func UnmarshalBoolean(s string) (bool, error) {
switch s {
case "0", "false", "no":
return false, nil
case "1", "true", "yes":
return true, nil
}
return false, fmt.Errorf("soap boolean: %q is not a valid boolean value", s)
}
// MarshalBinBase64 marshals []byte to SOAP "bin.base64" type.
func MarshalBinBase64(v []byte) (string, error) {
return base64.StdEncoding.EncodeToString(v), nil
}
// UnmarshalBinBase64 unmarshals []byte from the SOAP "bin.base64" type.
func UnmarshalBinBase64(s string) ([]byte, error) {
return base64.StdEncoding.DecodeString(s)
}
// MarshalBinHex marshals []byte to SOAP "bin.hex" type.
func MarshalBinHex(v []byte) (string, error) {
return hex.EncodeToString(v), nil
}
// UnmarshalBinHex unmarshals []byte from the SOAP "bin.hex" type.
func UnmarshalBinHex(s string) ([]byte, error) {
return hex.DecodeString(s)
}

View File

@@ -0,0 +1,481 @@
package soap
import (
"bytes"
"math"
"testing"
"time"
)
type convTest interface {
Marshal() (string, error)
Unmarshal(string) (interface{}, error)
Equal(result interface{}) bool
}
// duper is an interface that convTest values may optionally also implement to
// generate another convTest for a value in an otherwise identical testCase.
type duper interface {
Dupe(tag string) []convTest
}
type testCase struct {
value convTest
str string
wantMarshalErr bool
wantUnmarshalErr bool
noMarshal bool
noUnMarshal bool
tag string
}
type Ui1Test uint8
func (v Ui1Test) Marshal() (string, error) {
return MarshalUi1(uint8(v))
}
func (v Ui1Test) Unmarshal(s string) (interface{}, error) {
return UnmarshalUi1(s)
}
func (v Ui1Test) Equal(result interface{}) bool {
return uint8(v) == result.(uint8)
}
func (v Ui1Test) Dupe(tag string) []convTest {
if tag == "dupe" {
return []convTest{
Ui2Test(v),
Ui4Test(v),
}
}
return nil
}
type Ui2Test uint16
func (v Ui2Test) Marshal() (string, error) {
return MarshalUi2(uint16(v))
}
func (v Ui2Test) Unmarshal(s string) (interface{}, error) {
return UnmarshalUi2(s)
}
func (v Ui2Test) Equal(result interface{}) bool {
return uint16(v) == result.(uint16)
}
type Ui4Test uint32
func (v Ui4Test) Marshal() (string, error) {
return MarshalUi4(uint32(v))
}
func (v Ui4Test) Unmarshal(s string) (interface{}, error) {
return UnmarshalUi4(s)
}
func (v Ui4Test) Equal(result interface{}) bool {
return uint32(v) == result.(uint32)
}
type I1Test int8
func (v I1Test) Marshal() (string, error) {
return MarshalI1(int8(v))
}
func (v I1Test) Unmarshal(s string) (interface{}, error) {
return UnmarshalI1(s)
}
func (v I1Test) Equal(result interface{}) bool {
return int8(v) == result.(int8)
}
func (v I1Test) Dupe(tag string) []convTest {
if tag == "dupe" {
return []convTest{
I2Test(v),
I4Test(v),
}
}
return nil
}
type I2Test int16
func (v I2Test) Marshal() (string, error) {
return MarshalI2(int16(v))
}
func (v I2Test) Unmarshal(s string) (interface{}, error) {
return UnmarshalI2(s)
}
func (v I2Test) Equal(result interface{}) bool {
return int16(v) == result.(int16)
}
type I4Test int32
func (v I4Test) Marshal() (string, error) {
return MarshalI4(int32(v))
}
func (v I4Test) Unmarshal(s string) (interface{}, error) {
return UnmarshalI4(s)
}
func (v I4Test) Equal(result interface{}) bool {
return int32(v) == result.(int32)
}
type IntTest int64
func (v IntTest) Marshal() (string, error) {
return MarshalInt(int64(v))
}
func (v IntTest) Unmarshal(s string) (interface{}, error) {
return UnmarshalInt(s)
}
func (v IntTest) Equal(result interface{}) bool {
return int64(v) == result.(int64)
}
type Fixed14_4Test float64
func (v Fixed14_4Test) Marshal() (string, error) {
return MarshalFixed14_4(float64(v))
}
func (v Fixed14_4Test) Unmarshal(s string) (interface{}, error) {
return UnmarshalFixed14_4(s)
}
func (v Fixed14_4Test) Equal(result interface{}) bool {
return math.Abs(float64(v)-result.(float64)) < 0.001
}
type CharTest rune
func (v CharTest) Marshal() (string, error) {
return MarshalChar(rune(v))
}
func (v CharTest) Unmarshal(s string) (interface{}, error) {
return UnmarshalChar(s)
}
func (v CharTest) Equal(result interface{}) bool {
return rune(v) == result.(rune)
}
type DateTest struct{ time.Time }
func (v DateTest) Marshal() (string, error) {
return MarshalDate(time.Time(v.Time))
}
func (v DateTest) Unmarshal(s string) (interface{}, error) {
return UnmarshalDate(s)
}
func (v DateTest) Equal(result interface{}) bool {
return v.Time.Equal(result.(time.Time))
}
func (v DateTest) Dupe(tag string) []convTest {
if tag != "no:dateTime" {
return []convTest{DateTimeTest{v.Time}}
}
return nil
}
type TimeOfDayTest struct {
TimeOfDay
}
func (v TimeOfDayTest) Marshal() (string, error) {
return MarshalTimeOfDay(v.TimeOfDay)
}
func (v TimeOfDayTest) Unmarshal(s string) (interface{}, error) {
return UnmarshalTimeOfDay(s)
}
func (v TimeOfDayTest) Equal(result interface{}) bool {
return v.TimeOfDay == result.(TimeOfDay)
}
func (v TimeOfDayTest) Dupe(tag string) []convTest {
if tag != "no:time.tz" {
return []convTest{TimeOfDayTzTest{v.TimeOfDay}}
}
return nil
}
type TimeOfDayTzTest struct {
TimeOfDay
}
func (v TimeOfDayTzTest) Marshal() (string, error) {
return MarshalTimeOfDayTz(v.TimeOfDay)
}
func (v TimeOfDayTzTest) Unmarshal(s string) (interface{}, error) {
return UnmarshalTimeOfDayTz(s)
}
func (v TimeOfDayTzTest) Equal(result interface{}) bool {
return v.TimeOfDay == result.(TimeOfDay)
}
type DateTimeTest struct{ time.Time }
func (v DateTimeTest) Marshal() (string, error) {
return MarshalDateTime(time.Time(v.Time))
}
func (v DateTimeTest) Unmarshal(s string) (interface{}, error) {
return UnmarshalDateTime(s)
}
func (v DateTimeTest) Equal(result interface{}) bool {
return v.Time.Equal(result.(time.Time))
}
func (v DateTimeTest) Dupe(tag string) []convTest {
if tag != "no:dateTime.tz" {
return []convTest{DateTimeTzTest{v.Time}}
}
return nil
}
type DateTimeTzTest struct{ time.Time }
func (v DateTimeTzTest) Marshal() (string, error) {
return MarshalDateTimeTz(time.Time(v.Time))
}
func (v DateTimeTzTest) Unmarshal(s string) (interface{}, error) {
return UnmarshalDateTimeTz(s)
}
func (v DateTimeTzTest) Equal(result interface{}) bool {
return v.Time.Equal(result.(time.Time))
}
type BooleanTest bool
func (v BooleanTest) Marshal() (string, error) {
return MarshalBoolean(bool(v))
}
func (v BooleanTest) Unmarshal(s string) (interface{}, error) {
return UnmarshalBoolean(s)
}
func (v BooleanTest) Equal(result interface{}) bool {
return bool(v) == result.(bool)
}
type BinBase64Test []byte
func (v BinBase64Test) Marshal() (string, error) {
return MarshalBinBase64([]byte(v))
}
func (v BinBase64Test) Unmarshal(s string) (interface{}, error) {
return UnmarshalBinBase64(s)
}
func (v BinBase64Test) Equal(result interface{}) bool {
return bytes.Equal([]byte(v), result.([]byte))
}
type BinHexTest []byte
func (v BinHexTest) Marshal() (string, error) {
return MarshalBinHex([]byte(v))
}
func (v BinHexTest) Unmarshal(s string) (interface{}, error) {
return UnmarshalBinHex(s)
}
func (v BinHexTest) Equal(result interface{}) bool {
return bytes.Equal([]byte(v), result.([]byte))
}
func Test(t *testing.T) {
const time010203 time.Duration = (1*3600 + 2*60 + 3) * time.Second
const time0102 time.Duration = (1*3600 + 2*60) * time.Second
const time01 time.Duration = (1 * 3600) * time.Second
const time235959 time.Duration = (23*3600 + 59*60 + 59) * time.Second
// Fake out the local time for the implementation.
localLoc = time.FixedZone("Fake/Local", 6*3600)
defer func() {
localLoc = time.Local
}()
tests := []testCase{
// ui1
{str: "", value: Ui1Test(0), wantUnmarshalErr: true, noMarshal: true, tag: "dupe"},
{str: " ", value: Ui1Test(0), wantUnmarshalErr: true, noMarshal: true, tag: "dupe"},
{str: "abc", value: Ui1Test(0), wantUnmarshalErr: true, noMarshal: true, tag: "dupe"},
{str: "-1", value: Ui1Test(0), wantUnmarshalErr: true, noMarshal: true, tag: "dupe"},
{str: "0", value: Ui1Test(0), tag: "dupe"},
{str: "1", value: Ui1Test(1), tag: "dupe"},
{str: "255", value: Ui1Test(255), tag: "dupe"},
{str: "256", value: Ui1Test(0), wantUnmarshalErr: true, noMarshal: true},
// ui2
{str: "65535", value: Ui2Test(65535)},
{str: "65536", value: Ui2Test(0), wantUnmarshalErr: true, noMarshal: true},
// ui4
{str: "4294967295", value: Ui4Test(4294967295)},
{str: "4294967296", value: Ui4Test(0), wantUnmarshalErr: true, noMarshal: true},
// i1
{str: "", value: I1Test(0), wantUnmarshalErr: true, noMarshal: true, tag: "dupe"},
{str: " ", value: I1Test(0), wantUnmarshalErr: true, noMarshal: true, tag: "dupe"},
{str: "abc", value: I1Test(0), wantUnmarshalErr: true, noMarshal: true, tag: "dupe"},
{str: "0", value: I1Test(0), tag: "dupe"},
{str: "-1", value: I1Test(-1), tag: "dupe"},
{str: "127", value: I1Test(127), tag: "dupe"},
{str: "-128", value: I1Test(-128), tag: "dupe"},
{str: "128", value: I1Test(0), wantUnmarshalErr: true, noMarshal: true},
{str: "-129", value: I1Test(0), wantUnmarshalErr: true, noMarshal: true},
// i2
{str: "32767", value: I2Test(32767)},
{str: "-32768", value: I2Test(-32768)},
{str: "32768", value: I2Test(0), wantUnmarshalErr: true, noMarshal: true},
{str: "-32769", value: I2Test(0), wantUnmarshalErr: true, noMarshal: true},
// i4
{str: "2147483647", value: I4Test(2147483647)},
{str: "-2147483648", value: I4Test(-2147483648)},
{str: "2147483648", value: I4Test(0), wantUnmarshalErr: true, noMarshal: true},
{str: "-2147483649", value: I4Test(0), wantUnmarshalErr: true, noMarshal: true},
// int
{str: "9223372036854775807", value: IntTest(9223372036854775807)},
{str: "-9223372036854775808", value: IntTest(-9223372036854775808)},
{str: "9223372036854775808", value: IntTest(0), wantUnmarshalErr: true, noMarshal: true},
{str: "-9223372036854775809", value: IntTest(0), wantUnmarshalErr: true, noMarshal: true},
// fixed.14.4
{str: "0.0000", value: Fixed14_4Test(0)},
{str: "1.0000", value: Fixed14_4Test(1)},
{str: "1.2346", value: Fixed14_4Test(1.23456)},
{str: "-1.0000", value: Fixed14_4Test(-1)},
{str: "-1.2346", value: Fixed14_4Test(-1.23456)},
{str: "10000000000000.0000", value: Fixed14_4Test(1e13)},
{str: "100000000000000.0000", value: Fixed14_4Test(1e14), wantMarshalErr: true, wantUnmarshalErr: true},
{str: "-10000000000000.0000", value: Fixed14_4Test(-1e13)},
{str: "-100000000000000.0000", value: Fixed14_4Test(-1e14), wantMarshalErr: true, wantUnmarshalErr: true},
// char
{str: "a", value: CharTest('a')},
{str: "z", value: CharTest('z')},
{str: "\u1234", value: CharTest(0x1234)},
{str: "aa", value: CharTest(0), wantMarshalErr: true, wantUnmarshalErr: true},
{str: "", value: CharTest(0), wantMarshalErr: true, wantUnmarshalErr: true},
// date
{str: "2013-10-08", value: DateTest{time.Date(2013, 10, 8, 0, 0, 0, 0, localLoc)}, tag: "no:dateTime"},
{str: "20131008", value: DateTest{time.Date(2013, 10, 8, 0, 0, 0, 0, localLoc)}, noMarshal: true, tag: "no:dateTime"},
{str: "2013-10-08T10:30:50", value: DateTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:dateTime"},
{str: "2013-10-08T10:30:50Z", value: DateTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:dateTime"},
{str: "", value: DateTest{}, wantMarshalErr: true, wantUnmarshalErr: true, noMarshal: true},
{str: "-1", value: DateTest{}, wantUnmarshalErr: true, noMarshal: true},
// time
{str: "00:00:00", value: TimeOfDayTest{TimeOfDay{FromMidnight: 0}}},
{str: "000000", value: TimeOfDayTest{TimeOfDay{FromMidnight: 0}}, noMarshal: true},
{str: "24:00:00", value: TimeOfDayTest{TimeOfDay{FromMidnight: 24 * time.Hour}}, noMarshal: true}, // ISO8601 special case
{str: "24:01:00", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true},
{str: "24:00:01", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true},
{str: "25:00:00", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true},
{str: "00:60:00", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true},
{str: "00:00:60", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true},
{str: "01:02:03", value: TimeOfDayTest{TimeOfDay{FromMidnight: time010203}}},
{str: "010203", value: TimeOfDayTest{TimeOfDay{FromMidnight: time010203}}, noMarshal: true},
{str: "23:59:59", value: TimeOfDayTest{TimeOfDay{FromMidnight: time235959}}},
{str: "235959", value: TimeOfDayTest{TimeOfDay{FromMidnight: time235959}}, noMarshal: true},
{str: "01:02", value: TimeOfDayTest{TimeOfDay{FromMidnight: time0102}}, noMarshal: true},
{str: "0102", value: TimeOfDayTest{TimeOfDay{FromMidnight: time0102}}, noMarshal: true},
{str: "01", value: TimeOfDayTest{TimeOfDay{FromMidnight: time01}}, noMarshal: true},
{str: "foo 01:02:03", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:time.tz"},
{str: "foo\n01:02:03", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:time.tz"},
{str: "01:02:03 foo", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:time.tz"},
{str: "01:02:03\nfoo", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:time.tz"},
{str: "01:02:03Z", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:time.tz"},
{str: "01:02:03+01", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:time.tz"},
{str: "01:02:03+01:23", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:time.tz"},
{str: "01:02:03+0123", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:time.tz"},
{str: "01:02:03-01", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:time.tz"},
{str: "01:02:03-01:23", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:time.tz"},
{str: "01:02:03-0123", value: TimeOfDayTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:time.tz"},
// time.tz
{str: "24:00:01", value: TimeOfDayTzTest{}, wantUnmarshalErr: true, noMarshal: true},
{str: "01Z", value: TimeOfDayTzTest{TimeOfDay{time01, true, 0}}, noMarshal: true},
{str: "01:02:03Z", value: TimeOfDayTzTest{TimeOfDay{time010203, true, 0}}},
{str: "01+01", value: TimeOfDayTzTest{TimeOfDay{time01, true, 3600}}, noMarshal: true},
{str: "01:02:03+01", value: TimeOfDayTzTest{TimeOfDay{time010203, true, 3600}}, noMarshal: true},
{str: "01:02:03+01:23", value: TimeOfDayTzTest{TimeOfDay{time010203, true, 3600 + 23*60}}},
{str: "01:02:03+0123", value: TimeOfDayTzTest{TimeOfDay{time010203, true, 3600 + 23*60}}, noMarshal: true},
{str: "01:02:03-01", value: TimeOfDayTzTest{TimeOfDay{time010203, true, -3600}}, noMarshal: true},
{str: "01:02:03-01:23", value: TimeOfDayTzTest{TimeOfDay{time010203, true, -(3600 + 23*60)}}},
{str: "01:02:03-0123", value: TimeOfDayTzTest{TimeOfDay{time010203, true, -(3600 + 23*60)}}, noMarshal: true},
// dateTime
{str: "2013-10-08T00:00:00", value: DateTimeTest{time.Date(2013, 10, 8, 0, 0, 0, 0, localLoc)}, tag: "no:dateTime.tz"},
{str: "20131008", value: DateTimeTest{time.Date(2013, 10, 8, 0, 0, 0, 0, localLoc)}, noMarshal: true},
{str: "2013-10-08T10:30:50", value: DateTimeTest{time.Date(2013, 10, 8, 10, 30, 50, 0, localLoc)}, tag: "no:dateTime.tz"},
{str: "2013-10-08T10:30:50T", value: DateTimeTest{}, wantUnmarshalErr: true, noMarshal: true},
{str: "2013-10-08T10:30:50+01", value: DateTimeTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:dateTime.tz"},
{str: "2013-10-08T10:30:50+01:23", value: DateTimeTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:dateTime.tz"},
{str: "2013-10-08T10:30:50+0123", value: DateTimeTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:dateTime.tz"},
{str: "2013-10-08T10:30:50-01", value: DateTimeTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:dateTime.tz"},
{str: "2013-10-08T10:30:50-01:23", value: DateTimeTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:dateTime.tz"},
{str: "2013-10-08T10:30:50-0123", value: DateTimeTest{}, wantUnmarshalErr: true, noMarshal: true, tag: "no:dateTime.tz"},
// dateTime.tz
{str: "2013-10-08T10:30:50", value: DateTimeTzTest{time.Date(2013, 10, 8, 10, 30, 50, 0, localLoc)}, noMarshal: true},
{str: "2013-10-08T10:30:50+01", value: DateTimeTzTest{time.Date(2013, 10, 8, 10, 30, 50, 0, time.FixedZone("+01:00", 3600))}, noMarshal: true},
{str: "2013-10-08T10:30:50+01:23", value: DateTimeTzTest{time.Date(2013, 10, 8, 10, 30, 50, 0, time.FixedZone("+01:23", 3600+23*60))}},
{str: "2013-10-08T10:30:50+0123", value: DateTimeTzTest{time.Date(2013, 10, 8, 10, 30, 50, 0, time.FixedZone("+01:23", 3600+23*60))}, noMarshal: true},
{str: "2013-10-08T10:30:50-01", value: DateTimeTzTest{time.Date(2013, 10, 8, 10, 30, 50, 0, time.FixedZone("-01:00", -3600))}, noMarshal: true},
{str: "2013-10-08T10:30:50-01:23", value: DateTimeTzTest{time.Date(2013, 10, 8, 10, 30, 50, 0, time.FixedZone("-01:23", -(3600+23*60)))}},
{str: "2013-10-08T10:30:50-0123", value: DateTimeTzTest{time.Date(2013, 10, 8, 10, 30, 50, 0, time.FixedZone("-01:23", -(3600+23*60)))}, noMarshal: true},
// boolean
{str: "0", value: BooleanTest(false)},
{str: "1", value: BooleanTest(true)},
{str: "false", value: BooleanTest(false), noMarshal: true},
{str: "true", value: BooleanTest(true), noMarshal: true},
{str: "no", value: BooleanTest(false), noMarshal: true},
{str: "yes", value: BooleanTest(true), noMarshal: true},
{str: "", value: BooleanTest(false), noMarshal: true, wantUnmarshalErr: true},
{str: "other", value: BooleanTest(false), noMarshal: true, wantUnmarshalErr: true},
{str: "2", value: BooleanTest(false), noMarshal: true, wantUnmarshalErr: true},
{str: "-1", value: BooleanTest(false), noMarshal: true, wantUnmarshalErr: true},
// bin.base64
{str: "", value: BinBase64Test{}},
{str: "YQ==", value: BinBase64Test("a")},
{str: "TG9uZ2VyIFN0cmluZy4=", value: BinBase64Test("Longer String.")},
{str: "TG9uZ2VyIEFsaWduZWQu", value: BinBase64Test("Longer Aligned.")},
// bin.hex
{str: "", value: BinHexTest{}},
{str: "61", value: BinHexTest("a")},
{str: "4c6f6e67657220537472696e672e", value: BinHexTest("Longer String.")},
{str: "4C6F6E67657220537472696E672E", value: BinHexTest("Longer String."), noMarshal: true},
}
// Generate extra test cases from convTests that implement duper.
var extras []testCase
for i := range tests {
if duper, ok := tests[i].value.(duper); ok {
dupes := duper.Dupe(tests[i].tag)
for _, duped := range dupes {
dupedCase := testCase(tests[i])
dupedCase.value = duped
extras = append(extras, dupedCase)
}
}
}
tests = append(tests, extras...)
for _, test := range tests {
if test.noMarshal {
} else if resultStr, err := test.value.Marshal(); err != nil && !test.wantMarshalErr {
t.Errorf("For %T marshal %v, want %q, got error: %v", test.value, test.value, test.str, err)
} else if err == nil && test.wantMarshalErr {
t.Errorf("For %T marshal %v, want error, got %q", test.value, test.value, resultStr)
} else if err == nil && resultStr != test.str {
t.Errorf("For %T marshal %v, want %q, got %q", test.value, test.value, test.str, resultStr)
}
if test.noUnMarshal {
} else if resultValue, err := test.value.Unmarshal(test.str); err != nil && !test.wantUnmarshalErr {
t.Errorf("For %T unmarshal %q, want %v, got error: %v", test.value, test.str, test.value, err)
} else if err == nil && test.wantUnmarshalErr {
t.Errorf("For %T unmarshal %q, want error, got %v", test.value, test.str, resultValue)
} else if err == nil && !test.value.Equal(resultValue) {
t.Errorf("For %T unmarshal %q, want %v, got %v", test.value, test.str, test.value, resultValue)
}
}
}

View File

@@ -0,0 +1,202 @@
package ssdp
import (
"fmt"
"log"
"net/http"
"net/url"
"regexp"
"strconv"
"sync"
"time"
"github.com/fjl/goupnp/httpu"
)
const (
maxExpiryTimeSeconds = 24 * 60 * 60
)
var (
maxAgeRx = regexp.MustCompile("max-age=([0-9]+)")
)
type Entry struct {
// The address that the entry data was actually received from.
RemoteAddr string
// Unique Service Name. Identifies a unique instance of a device or service.
USN string
// Notfication Type. The type of device or service being announced.
NT string
// Server's self-identifying string.
Server string
Host string
// Location of the UPnP root device description.
Location *url.URL
// Despite BOOTID,CONFIGID being required fields, apparently they are not
// always set by devices. Set to -1 if not present.
BootID int32
ConfigID int32
SearchPort uint16
// When the last update was received for this entry identified by this USN.
LastUpdate time.Time
// When the last update's cached values are advised to expire.
CacheExpiry time.Time
}
func newEntryFromRequest(r *http.Request) (*Entry, error) {
now := time.Now()
expiryDuration, err := parseCacheControlMaxAge(r.Header.Get("CACHE-CONTROL"))
if err != nil {
return nil, fmt.Errorf("ssdp: error parsing CACHE-CONTROL max age: %v", err)
}
loc, err := url.Parse(r.Header.Get("LOCATION"))
if err != nil {
return nil, fmt.Errorf("ssdp: error parsing entry Location URL: %v", err)
}
bootID, err := parseUpnpIntHeader(r.Header, "BOOTID.UPNP.ORG", -1)
if err != nil {
return nil, err
}
configID, err := parseUpnpIntHeader(r.Header, "CONFIGID.UPNP.ORG", -1)
if err != nil {
return nil, err
}
searchPort, err := parseUpnpIntHeader(r.Header, "SEARCHPORT.UPNP.ORG", ssdpSearchPort)
if err != nil {
return nil, err
}
if searchPort < 1 || searchPort > 65535 {
return nil, fmt.Errorf("ssdp: search port %d is out of range", searchPort)
}
return &Entry{
RemoteAddr: r.RemoteAddr,
USN: r.Header.Get("USN"),
NT: r.Header.Get("NT"),
Server: r.Header.Get("SERVER"),
Host: r.Header.Get("HOST"),
Location: loc,
BootID: bootID,
ConfigID: configID,
SearchPort: uint16(searchPort),
LastUpdate: now,
CacheExpiry: now.Add(expiryDuration),
}, nil
}
func parseCacheControlMaxAge(cc string) (time.Duration, error) {
matches := maxAgeRx.FindStringSubmatch(cc)
if len(matches) != 2 {
return 0, fmt.Errorf("did not find exactly one max-age in cache control header: %q", cc)
}
expirySeconds, err := strconv.ParseInt(matches[1], 10, 16)
if err != nil {
return 0, err
}
if expirySeconds < 1 || expirySeconds > maxExpiryTimeSeconds {
return 0, fmt.Errorf("rejecting bad expiry time of %d seconds", expirySeconds)
}
return time.Duration(expirySeconds) * time.Second, nil
}
// parseUpnpIntHeader is intended to parse the
// {BOOT,CONFIGID,SEARCHPORT}.UPNP.ORG header fields. It returns the def if
// the head is empty or missing.
func parseUpnpIntHeader(headers http.Header, headerName string, def int32) (int32, error) {
s := headers.Get(headerName)
if s == "" {
return def, nil
}
v, err := strconv.ParseInt(s, 10, 32)
if err != nil {
return 0, fmt.Errorf("ssdp: could not parse header %s: %v", headerName, err)
}
return int32(v), nil
}
var _ httpu.Handler = new(Registry)
// Registry maintains knowledge of discovered devices and services.
type Registry struct {
lock sync.Mutex
byUSN map[string]*Entry
}
func NewRegistry() *Registry {
return &Registry{
byUSN: make(map[string]*Entry),
}
}
// ServeMessage implements httpu.Handler, and uses SSDP NOTIFY requests to
// maintain the registry of devices and services.
func (reg *Registry) ServeMessage(r *http.Request) {
if r.Method != methodNotify {
return
}
nts := r.Header.Get("nts")
var err error
switch nts {
case ntsAlive:
err = reg.handleNTSAlive(r)
case ntsUpdate:
err = reg.handleNTSUpdate(r)
case ntsByebye:
err = reg.handleNTSByebye(r)
default:
err = fmt.Errorf("unknown NTS value: %q", nts)
}
log.Printf("In %s request from %s: %v", nts, r.RemoteAddr, err)
}
func (reg *Registry) handleNTSAlive(r *http.Request) error {
entry, err := newEntryFromRequest(r)
if err != nil {
return err
}
reg.lock.Lock()
defer reg.lock.Unlock()
reg.byUSN[entry.USN] = entry
return nil
}
func (reg *Registry) handleNTSUpdate(r *http.Request) error {
entry, err := newEntryFromRequest(r)
if err != nil {
return err
}
nextBootID, err := parseUpnpIntHeader(r.Header, "NEXTBOOTID.UPNP.ORG", -1)
if err != nil {
return err
}
entry.BootID = nextBootID
reg.lock.Lock()
defer reg.lock.Unlock()
reg.byUSN[entry.USN] = entry
return nil
}
func (reg *Registry) handleNTSByebye(r *http.Request) error {
reg.lock.Lock()
defer reg.lock.Unlock()
delete(reg.byUSN, r.Header.Get("USN"))
return nil
}

Some files were not shown because too many files have changed in this diff Show More