acounts/abi: refactor abi, generalize abi pack/unpack to Arguments

This commit is contained in:
Martin Holst Swende
2017-12-21 10:26:30 +01:00
parent 81d4cafb32
commit 73d4a57d47
7 changed files with 260 additions and 251 deletions

View File

@ -19,6 +19,8 @@ package abi
import (
"encoding/json"
"fmt"
"reflect"
"strings"
)
// Argument holds the name of the argument and the corresponding type.
@ -29,6 +31,8 @@ type Argument struct {
Indexed bool // indexed is only used by events
}
type Arguments []Argument
// UnmarshalJSON implements json.Unmarshaler interface
func (a *Argument) UnmarshalJSON(data []byte) error {
var extarg struct {
@ -60,3 +64,160 @@ func countNonIndexedArguments(args []Argument) int {
}
return out
}
func (a *Arguments) isTuple() bool {
return a != nil && len(*a) > 1
}
func (a *Arguments) Unpack(v interface{}, data []byte) error {
if a.isTuple() {
return a.unpackTuple(v, data)
}
return a.unpackAtomic(v, data)
}
func (a *Arguments) unpackTuple(v interface{}, output []byte) error {
// make sure the passed value is a pointer
valueOf := reflect.ValueOf(v)
if reflect.Ptr != valueOf.Kind() {
return fmt.Errorf("abi: Unpack(non-pointer %T)", v)
}
var (
value = valueOf.Elem()
typ = value.Type()
kind = value.Kind()
)
/* !TODO add this back
if err := requireUnpackKind(value, typ, kind, (*a), false); err != nil {
return err
}
*/
// `i` counts the nonindexed arguments.
// `j` counts the number of complex types.
// both `i` and `j` are used to to correctly compute `data` offset.
i, j := -1, 0
for _, arg := range(*a) {
if arg.Indexed {
// can't read, continue
continue
}
i++
marshalledValue, err := toGoType((i+j)*32, arg.Type, output)
if err != nil {
return err
}
if arg.Type.T == ArrayTy {
// combined index ('i' + 'j') need to be adjusted only by size of array, thus
// we need to decrement 'j' because 'i' was incremented
j += arg.Type.Size - 1
}
reflectValue := reflect.ValueOf(marshalledValue)
switch kind {
case reflect.Struct:
for j := 0; j < typ.NumField(); j++ {
field := typ.Field(j)
// TODO read tags: `abi:"fieldName"`
if field.Name == strings.ToUpper(arg.Name[:1])+arg.Name[1:] {
if err := set(value.Field(j), reflectValue, arg); err != nil {
return err
}
}
}
case reflect.Slice, reflect.Array:
if value.Len() < i {
return fmt.Errorf("abi: insufficient number of arguments for unpack, want %d, got %d", len(*a), value.Len())
}
v := value.Index(i)
if err := requireAssignable(v, reflectValue); err != nil {
return err
}
reflectValue := reflect.ValueOf(marshalledValue)
return set(v.Elem(), reflectValue, arg)
default:
return fmt.Errorf("abi:[2] cannot unmarshal tuple in to %v", typ)
}
}
return nil
}
func (a *Arguments) unpackAtomic(v interface{}, output []byte) error {
// make sure the passed value is a pointer
valueOf := reflect.ValueOf(v)
if reflect.Ptr != valueOf.Kind() {
return fmt.Errorf("abi: Unpack(non-pointer %T)", v)
}
arg := (*a)[0]
if arg.Indexed {
return fmt.Errorf("abi: attempting to unpack indexed variable into element.")
}
value := valueOf.Elem()
marshalledValue, err := toGoType(0, arg.Type, output)
if err != nil {
return err
}
if err := set(value, reflect.ValueOf(marshalledValue), arg); err != nil {
return err
}
return nil
}
func (arguments *Arguments) Pack(args ...interface{}) ([]byte, error) {
// Make sure arguments match up and pack them
if arguments == nil {
return nil, fmt.Errorf("arguments are nil, programmer error!")
}
abiArgs := *arguments
if len(args) != len(abiArgs) {
return nil, fmt.Errorf("argument count mismatch: %d for %d", len(args), len(abiArgs))
}
// variable input is the output appended at the end of packed
// output. This is used for strings and bytes types input.
var variableInput []byte
// input offset is the bytes offset for packed output
inputOffset := 0
for _, abiArg := range abiArgs {
if abiArg.Type.T == ArrayTy {
inputOffset += (32 * abiArg.Type.Size)
} else {
inputOffset += 32
}
}
var ret []byte
for i, a := range args {
input := abiArgs[i]
// pack the input
packed, err := input.Type.pack(reflect.ValueOf(a))
if err != nil {
return nil, err
}
// check for a slice type (string, bytes, slice)
if input.Type.requiresLengthPrefix() {
// calculate the offset
offset := inputOffset + len(variableInput)
// set the offset
ret = append(ret, packNum(reflect.ValueOf(offset))...)
// Append the packed output to the variable input. The variable input
// will be appended at the end of the input.
variableInput = append(variableInput, packed...)
} else {
// append the packed value to the input
ret = append(ret, packed...)
}
}
// append the variable input at the end of the packed input
ret = append(ret, variableInput...)
return ret, nil
}