p2p: disable encryption handshake

The diff is a bit bigger than expected because the protocol handshake
logic has moved out of Peer. This is necessary because the protocol
handshake will have custom framing in the final protocol.
This commit is contained in:
Felix Lange
2015-02-19 01:52:03 +01:00
parent 4322632c59
commit 73f94f3755
7 changed files with 274 additions and 314 deletions

434
p2p/handshake.go Normal file
View File

@ -0,0 +1,434 @@
package p2p
import (
"crypto/ecdsa"
"crypto/rand"
"errors"
"fmt"
"io"
"net"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/ecies"
"github.com/ethereum/go-ethereum/crypto/secp256k1"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/rlp"
)
const (
sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
sigLen = 65 // elliptic S256
pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
shaLen = 32 // hash length (for nonce etc)
authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
authRespLen = pubLen + shaLen + 1
eciesBytes = 65 + 16 + 32
iHSLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
rHSLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
)
type conn struct {
*frameRW
*protoHandshake
}
func newConn(fd net.Conn, hs *protoHandshake) *conn {
return &conn{newFrameRW(fd, msgWriteTimeout), hs}
}
// encHandshake represents information about the remote end
// of a connection that is negotiated during the encryption handshake.
type encHandshake struct {
ID discover.NodeID
IngressMAC []byte
EgressMAC []byte
Token []byte
}
// protoHandshake is the RLP structure of the protocol handshake.
type protoHandshake struct {
Version uint64
Name string
Caps []Cap
ListenPort uint64
ID discover.NodeID
}
// setupConn starts a protocol session on the given connection.
// It runs the encryption handshake and the protocol handshake.
// If dial is non-nil, the connection the local node is the initiator.
func setupConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node) (*conn, error) {
if dial == nil {
return setupInboundConn(fd, prv, our)
} else {
return setupOutboundConn(fd, prv, our, dial)
}
}
func setupInboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake) (*conn, error) {
// var remotePubkey []byte
// sessionToken, remotePubkey, err = inboundEncHandshake(fd, prv, nil)
// copy(remoteID[:], remotePubkey)
rw := newFrameRW(fd, msgWriteTimeout)
rhs, err := readProtocolHandshake(rw, our)
if err != nil {
return nil, err
}
if err := writeProtocolHandshake(rw, our); err != nil {
return nil, fmt.Errorf("protocol write error: %v", err)
}
return &conn{rw, rhs}, nil
}
func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node) (*conn, error) {
// remoteID = dial.ID
// sessionToken, err = outboundEncHandshake(fd, prv, remoteID[:], nil)
rw := newFrameRW(fd, msgWriteTimeout)
if err := writeProtocolHandshake(rw, our); err != nil {
return nil, fmt.Errorf("protocol write error: %v", err)
}
rhs, err := readProtocolHandshake(rw, our)
if err != nil {
return nil, fmt.Errorf("protocol handshake read error: %v", err)
}
if rhs.ID != dial.ID {
return nil, errors.New("dialed node id mismatch")
}
return &conn{rw, rhs}, nil
}
// outboundEncHandshake negotiates a session token on conn.
// it should be called on the dialing side of the connection.
//
// privateKey is the local client's private key
// remotePublicKey is the remote peer's node ID
// sessionToken is the token from a previous session with this node.
func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) (
newSessionToken []byte,
err error,
) {
auth, initNonce, randomPrivKey, err := authMsg(prvKey, remotePublicKey, sessionToken)
if err != nil {
return nil, err
}
if _, err = conn.Write(auth); err != nil {
return nil, err
}
response := make([]byte, rHSLen)
if _, err = io.ReadFull(conn, response); err != nil {
return nil, err
}
recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prvKey)
if err != nil {
return nil, err
}
return newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
}
// authMsg creates the initiator handshake.
func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) (
auth, initNonce []byte,
randomPrvKey *ecdsa.PrivateKey,
err error,
) {
// session init, common to both parties
remotePubKey, err := importPublicKey(remotePubKeyS)
if err != nil {
return
}
var tokenFlag byte // = 0x00
if sessionToken == nil {
// no session token found means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers
// generate shared key from prv and remote pubkey
if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
return
}
// tokenFlag = 0x00 // redundant
} else {
// for known peers, we use stored token from the previous session
tokenFlag = 0x01
}
//E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
// E(remote-pubk, S(ecdhe-random, token^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x1)
// allocate msgLen long message,
var msg []byte = make([]byte, authMsgLen)
initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
if _, err = rand.Read(initNonce); err != nil {
return
}
// create known message
// ecdh-shared-secret^nonce for new peers
// token^nonce for old peers
var sharedSecret = xor(sessionToken, initNonce)
// generate random keypair to use for signing
if randomPrvKey, err = crypto.GenerateKey(); err != nil {
return
}
// sign shared secret (message known to both parties): shared-secret
var signature []byte
// signature = sign(ecdhe-random, shared-secret)
// uses secp256k1.Sign
if signature, err = crypto.Sign(sharedSecret, randomPrvKey); err != nil {
return
}
// message
// signed-shared-secret || H(ecdhe-random-pubk) || pubk || nonce || 0x0
copy(msg, signature) // copy signed-shared-secret
// H(ecdhe-random-pubk)
var randomPubKey64 []byte
if randomPubKey64, err = exportPublicKey(&randomPrvKey.PublicKey); err != nil {
return
}
var pubKey64 []byte
if pubKey64, err = exportPublicKey(&prvKey.PublicKey); err != nil {
return
}
copy(msg[sigLen:sigLen+shaLen], crypto.Sha3(randomPubKey64))
// pubkey copied to the correct segment.
copy(msg[sigLen+shaLen:sigLen+shaLen+pubLen], pubKey64)
// nonce is already in the slice
// stick tokenFlag byte to the end
msg[authMsgLen-1] = tokenFlag
// encrypt using remote-pubk
// auth = eciesEncrypt(remote-pubk, msg)
if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil {
return
}
return
}
// completeHandshake is called when the initiator receives an
// authentication response (aka receiver handshake). It completes the
// handshake by reading off parameters the remote peer provides needed
// to set up the secure session.
func completeHandshake(auth []byte, prvKey *ecdsa.PrivateKey) (
respNonce []byte,
remoteRandomPubKey *ecdsa.PublicKey,
tokenFlag bool,
err error,
) {
var msg []byte
// they prove that msg is meant for me,
// I prove I possess private key if i can read it
if msg, err = crypto.Decrypt(prvKey, auth); err != nil {
return
}
respNonce = msg[pubLen : pubLen+shaLen]
var remoteRandomPubKeyS = msg[:pubLen]
if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
return
}
if msg[authRespLen-1] == 0x01 {
tokenFlag = true
}
return
}
// inboundEncHandshake negotiates a session token on conn.
// it should be called on the listening side of the connection.
//
// privateKey is the local client's private key
// sessionToken is the token from a previous session with this node.
func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) (
token, remotePubKey []byte,
err error,
) {
// we are listening connection. we are responders in the
// handshake. Extract info from the authentication. The initiator
// starts by sending us a handshake that we need to respond to. so
// we read auth message first, then respond.
auth := make([]byte, iHSLen)
if _, err := io.ReadFull(conn, auth); err != nil {
return nil, nil, err
}
response, recNonce, initNonce, remotePubKey, randomPrivKey, remoteRandomPubKey, err := authResp(auth, sessionToken, prvKey)
if err != nil {
return nil, nil, err
}
if _, err = conn.Write(response); err != nil {
return nil, nil, err
}
token, err = newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
return token, remotePubKey, err
}
// authResp is called by peer if it accepted (but not
// initiated) the connection from the remote. It is passed the initiator
// handshake received and the session token belonging to the
// remote initiator.
//
// The first return value is the authentication response (aka receiver
// handshake) that is to be sent to the remote initiator.
func authResp(auth, sessionToken []byte, prvKey *ecdsa.PrivateKey) (
authResp, respNonce, initNonce, remotePubKeyS []byte,
randomPrivKey *ecdsa.PrivateKey,
remoteRandomPubKey *ecdsa.PublicKey,
err error,
) {
// they prove that msg is meant for me,
// I prove I possess private key if i can read it
msg, err := crypto.Decrypt(prvKey, auth)
if err != nil {
return
}
remotePubKeyS = msg[sigLen+shaLen : sigLen+shaLen+pubLen]
remotePubKey, _ := importPublicKey(remotePubKeyS)
var tokenFlag byte
if sessionToken == nil {
// no session token found means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers
// generate shared key from prv and remote pubkey
if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
return
}
// tokenFlag = 0x00 // redundant
} else {
// for known peers, we use stored token from the previous session
tokenFlag = 0x01
}
// the initiator nonce is read off the end of the message
initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
// I prove that i own prv key (to derive shared secret, and read
// nonce off encrypted msg) and that I own shared secret they
// prove they own the private key belonging to ecdhe-random-pubk
// we can now reconstruct the signed message and recover the peers
// pubkey
var signedMsg = xor(sessionToken, initNonce)
var remoteRandomPubKeyS []byte
if remoteRandomPubKeyS, err = secp256k1.RecoverPubkey(signedMsg, msg[:sigLen]); err != nil {
return
}
// convert to ECDSA standard
if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
return
}
// now we find ourselves a long task too, fill it random
var resp = make([]byte, authRespLen)
// generate shaLen long nonce
respNonce = resp[pubLen : pubLen+shaLen]
if _, err = rand.Read(respNonce); err != nil {
return
}
// generate random keypair for session
if randomPrivKey, err = crypto.GenerateKey(); err != nil {
return
}
// responder auth message
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
var randomPubKeyS []byte
if randomPubKeyS, err = exportPublicKey(&randomPrivKey.PublicKey); err != nil {
return
}
copy(resp[:pubLen], randomPubKeyS)
// nonce is already in the slice
resp[authRespLen-1] = tokenFlag
// encrypt using remote-pubk
// auth = eciesEncrypt(remote-pubk, msg)
// why not encrypt with ecdhe-random-remote
if authResp, err = crypto.Encrypt(remotePubKey, resp); err != nil {
return
}
return
}
// newSession is called after the handshake is completed. The
// arguments are values negotiated in the handshake. The return value
// is a new session Token to be remembered for the next time we
// connect with this peer.
func newSession(initNonce, respNonce []byte, privKey *ecdsa.PrivateKey, remoteRandomPubKey *ecdsa.PublicKey) ([]byte, error) {
// 3) Now we can trust ecdhe-random-pubk to derive new keys
//ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk)
pubKey := ecies.ImportECDSAPublic(remoteRandomPubKey)
dhSharedSecret, err := ecies.ImportECDSA(privKey).GenerateShared(pubKey, sskLen, sskLen)
if err != nil {
return nil, err
}
sharedSecret := crypto.Sha3(dhSharedSecret, crypto.Sha3(respNonce, initNonce))
sessionToken := crypto.Sha3(sharedSecret)
return sessionToken, nil
}
// importPublicKey unmarshals 512 bit public keys.
func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) {
var pubKey65 []byte
switch len(pubKey) {
case 64:
// add 'uncompressed key' flag
pubKey65 = append([]byte{0x04}, pubKey...)
case 65:
pubKey65 = pubKey
default:
return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
}
return crypto.ToECDSAPub(pubKey65), nil
}
func exportPublicKey(pubKeyEC *ecdsa.PublicKey) (pubKey []byte, err error) {
if pubKeyEC == nil {
return nil, fmt.Errorf("no ECDSA public key given")
}
return crypto.FromECDSAPub(pubKeyEC)[1:], nil
}
func xor(one, other []byte) (xor []byte) {
xor = make([]byte, len(one))
for i := 0; i < len(one); i++ {
xor[i] = one[i] ^ other[i]
}
return xor
}
func writeProtocolHandshake(w MsgWriter, our *protoHandshake) error {
return EncodeMsg(w, handshakeMsg, our.Version, our.Name, our.Caps, our.ListenPort, our.ID[:])
}
func readProtocolHandshake(r MsgReader, our *protoHandshake) (*protoHandshake, error) {
// read and handle remote handshake
msg, err := r.ReadMsg()
if err != nil {
return nil, err
}
if msg.Code == discMsg {
// disconnect before protocol handshake is valid according to the
// spec and we send it ourself if Server.addPeer fails.
var reason DiscReason
rlp.Decode(msg.Payload, &reason)
return nil, discRequestedError(reason)
}
if msg.Code != handshakeMsg {
return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
}
if msg.Size > baseProtocolMaxMsgSize {
return nil, fmt.Errorf("message too big (%d > %d)", msg.Size, baseProtocolMaxMsgSize)
}
var hs protoHandshake
if err := msg.Decode(&hs); err != nil {
return nil, err
}
// validate handshake info
if hs.Version != our.Version {
return nil, newPeerError(errP2PVersionMismatch, "required version %d, received %d\n", baseProtocolVersion, hs.Version)
}
if (hs.ID == discover.NodeID{}) {
return nil, newPeerError(errPubkeyInvalid, "missing")
}
return &hs, nil
}