core: add Metropolis pre-compiles (EIP 197, 198 and 213)

This commit is contained in:
Jeffrey Wilcke
2017-08-10 14:07:11 +03:00
committed by Péter Szilágyi
parent 6ca59d98f8
commit 7bbdf3e268
3 changed files with 242 additions and 2 deletions

View File

@ -22,7 +22,9 @@ import (
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/bn256"
"github.com/ethereum/go-ethereum/params"
"golang.org/x/crypto/ripemd160"
)
@ -45,6 +47,19 @@ var PrecompiledContracts = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{4}): &dataCopy{},
}
// PrecompiledContractsMetropolis contains the default set of ethereum contracts
// for metropolis hardfork
var PrecompiledContractsMetropolis = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{1}): &ecrecover{},
common.BytesToAddress([]byte{2}): &sha256hash{},
common.BytesToAddress([]byte{3}): &ripemd160hash{},
common.BytesToAddress([]byte{4}): &dataCopy{},
common.BytesToAddress([]byte{5}): &bigModexp{},
common.BytesToAddress([]byte{6}): &bn256Add{},
common.BytesToAddress([]byte{7}): &bn256ScalarMul{},
common.BytesToAddress([]byte{8}): &pairing{},
}
// RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go
func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
gas := p.RequiredGas(input)
@ -132,3 +147,190 @@ func (c *dataCopy) RequiredGas(input []byte) uint64 {
func (c *dataCopy) Run(in []byte) ([]byte, error) {
return in, nil
}
// bigModexp implements a native big integer exponential modular operation.
type bigModexp struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *bigModexp) RequiredGas(input []byte) uint64 {
// TODO reword required gas to have error reporting and convert arithmetic
// to uint64.
if len(input) < 3*32 {
input = append(input, make([]byte, 3*32-len(input))...)
}
var (
baseLen = new(big.Int).SetBytes(input[:31])
expLen = math.BigMax(new(big.Int).SetBytes(input[32:64]), big.NewInt(1))
modLen = new(big.Int).SetBytes(input[65:97])
)
x := new(big.Int).Set(math.BigMax(baseLen, modLen))
x.Mul(x, x)
x.Mul(x, expLen)
x.Div(x, new(big.Int).SetUint64(params.QuadCoeffDiv))
return x.Uint64()
}
func (c *bigModexp) Run(input []byte) ([]byte, error) {
if len(input) < 3*32 {
input = append(input, make([]byte, 3*32-len(input))...)
}
// why 32-byte? These values won't fit anyway
var (
baseLen = new(big.Int).SetBytes(input[:32]).Uint64()
expLen = new(big.Int).SetBytes(input[32:64]).Uint64()
modLen = new(big.Int).SetBytes(input[64:96]).Uint64()
)
input = input[96:]
if uint64(len(input)) < baseLen {
input = append(input, make([]byte, baseLen-uint64(len(input)))...)
}
base := new(big.Int).SetBytes(input[:baseLen])
input = input[baseLen:]
if uint64(len(input)) < expLen {
input = append(input, make([]byte, expLen-uint64(len(input)))...)
}
exp := new(big.Int).SetBytes(input[:expLen])
input = input[expLen:]
if uint64(len(input)) < modLen {
input = append(input, make([]byte, modLen-uint64(len(input)))...)
}
mod := new(big.Int).SetBytes(input[:modLen])
return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), len(input[:modLen])), nil
}
type bn256Add struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *bn256Add) RequiredGas(input []byte) uint64 {
return 0 // TODO
}
func (c *bn256Add) Run(in []byte) ([]byte, error) {
in = common.RightPadBytes(in, 128)
x, onCurve := new(bn256.G1).Unmarshal(in[:64])
if !onCurve {
return nil, errNotOnCurve
}
gx, gy, _, _ := x.CurvePoints()
if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
}
y, onCurve := new(bn256.G1).Unmarshal(in[64:128])
if !onCurve {
return nil, errNotOnCurve
}
gx, gy, _, _ = y.CurvePoints()
if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
}
x.Add(x, y)
return x.Marshal(), nil
}
type bn256ScalarMul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 {
return 0 // TODO
}
func (c *bn256ScalarMul) Run(in []byte) ([]byte, error) {
in = common.RightPadBytes(in, 96)
g1, onCurve := new(bn256.G1).Unmarshal(in[:64])
if !onCurve {
return nil, errNotOnCurve
}
x, y, _, _ := g1.CurvePoints()
if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
}
g1.ScalarMult(g1, new(big.Int).SetBytes(in[64:96]))
return g1.Marshal(), nil
}
// pairing implements a pairing pre-compile for the bn256 curve
type pairing struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *pairing) RequiredGas(input []byte) uint64 {
//return 0 // TODO
k := (len(input) + 191) / pairSize
return uint64(60000*k + 40000)
}
const pairSize = 192
var (
true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
fals32Byte = make([]byte, 32)
errNotOnCurve = errors.New("point not on elliptic curve")
errInvalidCurvePoint = errors.New("invalid elliptic curve point")
)
func (c *pairing) Run(in []byte) ([]byte, error) {
if len(in) == 0 {
return true32Byte, nil
}
if len(in)%pairSize > 0 {
return nil, errBadPrecompileInput
}
var (
g1s []*bn256.G1
g2s []*bn256.G2
)
for i := 0; i < len(in); i += pairSize {
g1, onCurve := new(bn256.G1).Unmarshal(in[i : i+64])
if !onCurve {
return nil, errNotOnCurve
}
x, y, _, _ := g1.CurvePoints()
if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
}
g2, onCurve := new(bn256.G2).Unmarshal(in[i+64 : i+192])
if !onCurve {
return nil, errNotOnCurve
}
x2, y2, _, _ := g2.CurvePoints()
if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 ||
y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
}
g1s = append(g1s, g1)
g2s = append(g2s, g2)
}
isOne := bn256.PairingCheck(g1s, g2s)
if isOne {
return true32Byte, nil
}
return fals32Byte, nil
}